1887

Abstract

A polyphasic approach was used to characterize a bacterium, GPTSA 11, isolated from a warm spring located in a reserve forest in Assam, India. The cells are Gram-variable, strictly aerobic, sporulating motile rods. The major fatty acids of the strain are C anteiso (48·42 %), C iso (11·59 %), C 11 (6·16 %), C iso (6·03 %), C anteiso (5·68 %) and C 7 alcohol (5·01 %). The presence of the fatty acid C 7 alcohol distinguishes this strain from other closely related species of the genus . The strain contains MK-7 as the diagnostic menaquinone. The G+C content of the genomic DNA is 41·2 mol%. Analysis of the 16S rRNA gene sequence (1466 nt) revealed the presence of signature sequences PAEN 515F (5′-GAGTAACTGCTCTCGGAATGACGGTACTTGAGAAGAAAGCCCC-3′) and PAEN 862F (5′-TCGATACCCTTGGTGCCGAAGT-3′), which were found in the species of the genus surveyed by Shida . [ Shida, O., Takagi, H., Kadowaki, K., Nakamura, L. K. & Komagata, K. (1997) . , 289–298]. The sequence shows closest similarity (95·85 %) to that of , followed by (94·34 %), (93·87 %), (93·80 %), (93·47 %) and (93·40 %). Biochemical, physiological, chemotaxonomic and phylogenetic analyses justify placement of the strain in the genus but not within any existing species. It should, therefore, be considered as representing a novel species, for which the name sp. nov. is proposed. The type strain is GPTSA 11 (=MTCC 6934=JCM 13186).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63846-0
2005-11-01
2020-12-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/6/2577.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63846-0&mimeType=html&fmt=ahah

References

  1. Ash C., Farrow J. A. E., Wallbanks S., Collins M. D. 1991; Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small subunit ribosomal RNA sequences. Lett Appl Microbiol 13:202–206
    [Google Scholar]
  2. Ash C., Priest F. G., Collins M. D. 1993; Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . Antonie van Leeuwenhoek 64:253–260
    [Google Scholar]
  3. Claus D., Berkeley R. C. W. 1986; Genus Bacillus Cohn 1872, 174AL . In Bergey's Manual of Systematic Bacteriology vol. 2 pp  1105–1139 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  4. Collins M. D., Jones D. 1980; Lipids in the classification and identification of coryneform bacteria containing peptidoglycan based on 2,4-diamino butyric acid (DAB. J Appl Bacteriol 48:459–470 [CrossRef]
    [Google Scholar]
  5. Daane L. L., Harjono I., Barns S. M., Launen L. A., Palleroni N. J., Häggblom M. M. 2002; PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. Int J Syst Evol Microbiol 52:131–139
    [Google Scholar]
  6. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  7. Johnson J. L. 1994; Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology . pp  656–682 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  8. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  9. Logan N. A., De Clerck E., Lebbe L., Verhelst A., Goris J., Forsyth G., Rodríguez-Díaz M., Heyndrickx M., De Vos P. 2004; Paenibacillus cineris sp. nov. and Paenibacillus cookii sp. nov. from Antarctic volcanic soils and a gelatin-processing plant. Int J Syst Evol Microbiol 54:1071–1076 [CrossRef]
    [Google Scholar]
  10. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206
    [Google Scholar]
  11. Montes J. M., Mercadé E., Bozal N., Guinea J. 2004; Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int J Syst Evol Microbiol 54:1521–1526 [CrossRef]
    [Google Scholar]
  12. Murray R. G. E., Doetsch R. N., Robinow C. F. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology pp  21–41 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Pandey K. K., Mayilraj S., Chakrabarti T. 2002; Pseudomonas indica sp. nov., a novel butane-utilizing species. Int J Syst Evol Microbiol 52:1559–1567 [CrossRef]
    [Google Scholar]
  14. Pettersson B., Rippere K. E., Yousten A. A., Priest F. G. 1999; Transfer of Bacillus lentimorbus and Bacillus popilliae to the genus Paenibacillus with emended descriptions of Paenibacillus lentimorbus comb. nov. and Paenibacillus popilliae comb. nov. Int J Syst Bacteriol 49:531–540 [CrossRef]
    [Google Scholar]
  15. Powers E. M. 1995; Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61:3756–3758
    [Google Scholar]
  16. Rivas R., Mateos P. F., Martínez-Molina E., Velázquez E. 2005; Paenibacillus phyllosphaerae sp. nov., a xylanolytic bacterium isolated from the phyllosphere of Phoenix dactylifera . Int J Syst Evol Microbiol 55:743–746 [CrossRef]
    [Google Scholar]
  17. Roux V., Raoult D. 2004; Paenibacillus massiliensis sp. nov., Paenibacillus sanguinis sp. nov. and Paenibacillus timonensis sp. nov., isolated from blood cultures. Int J Syst Evol Microbiol 54:1049–1054 [CrossRef]
    [Google Scholar]
  18. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  19. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K. 1997; Transfer of Bacillus alginolyticus , Bacillus chondroitinus , Bacillus curdlanolyticus , Bacillus glucanolyticus , Bacillus kobensis , and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . Int J Syst Bacteriol 47:289–298 [CrossRef]
    [Google Scholar]
  20. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp  607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  21. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  22. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231
    [Google Scholar]
  23. Takeda M., Suzuki I., Koizumi J. 2005; Paenibacillus hodogayensis sp. nov., capable of degrading the polysaccharide produced by Sphaerotilus natans . Int J Syst Evol Microbiol 55:737–741 [CrossRef]
    [Google Scholar]
  24. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  25. Van de Peer Y., De Wachter R. 1997; Construction of evolutionary distance trees with treecon for Windows: accounting for variation in nucleotide substitution rate among sites. Comput Appl Biosci 13:227–230
    [Google Scholar]
  26. Velázquez E, de Miguel T., Poza M, Rivas R, Rosselló-Mora R., Villa G. T. 2004; Paenibacillus favisporus sp. nov., a xylanolytic bacterium isolated from cow faeces. Int J Syst Evol Microbiol 54:59–64 [CrossRef]
    [Google Scholar]
  27. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  28. Yoon J.-H., Oh H.-M., Yoon B.-D., Kang K. H., Park Y.-H. 2003; Paenibacillus kribbensis sp. nov. and Paenibacillus terrae sp. nov., bioflocculants for efficient harvesting of algal cells. Int J Syst Evol Microbiol 53:295–301 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63846-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63846-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error