1887

Abstract

Gram-positive bacteria with a high G+C content are currently recognized as a distinct phylum, , on the basis of their branching in 16S rRNA trees. Except for an insert in the 23S rRNA, there are no unique biochemical or molecular characteristics known at present that can distinguish this group from all other bacteria. In this work, three conserved indels (i.e. inserts or deletions) are described in three widely distributed proteins that are distinctive characteristics of the and are not found in any other groups of bacteria. The identified signatures are a 2 aa deletion in cytochrome- oxidase subunit 1 (Cox1), a 4 aa insert in CTP synthetase and a 5 aa insert in glutamyl-tRNA synthetase (GluRS). Additionally, the actinobacterial specificity of the large insert in the 23S rRNA was also tested. Using primers designed for conserved regions flanking these signatures, fragments of most of these genes were amplified from 23 actinobacterial species, covering many different families and orders, for which no sequence information was previously available. All the 61 sequenced fragments, except two in GluRS, were found to contain the indicated signatures. The presence of these signatures in various species from 20 families within this phylum provides evidence that they are likely distinctive characteristics of the entire phylum, which were introduced in a common ancestor of this group. The absence of all four of these signatures in suggests that this species, which is distantly related to other actinobacteria in 16S rRNA and CTP synthetase trees, may not be a part of the phylum . The identified signatures provide novel molecular means for defining and circumscribing the phylum . Functional studies on them should prove helpful in understanding novel biochemical and physiological characteristics of this group of bacteria.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63785-0
2005-11-01
2019-08-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/6/2401.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63785-0&mimeType=html&fmt=ahah

References

  1. Ahmad, S., Selvapandiyan, A. & Bhatnagar, R. K. ( 2000; ). Phylogenetic analysis of Gram-positive bacteria based on grpE, encoded by the dnaK operon. Int J Syst Evol Microbiol 50, 1761–1766.
    [Google Scholar]
  2. Atlas, R. M. ( 1997; ). Principles of Microbiology. New York: WCB McGraw-Hill.
  3. Bentley, S. D., Chater, K. F., Cerdeno-Tarraga, A. M. & 40 other authors ( 2002; ). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147.[CrossRef]
    [Google Scholar]
  4. Boone, D. R., Castenholz, R. W. & Garrity, G. M. (editors) ( 2001; ). Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1. New York: Springer.
  5. Bruggemann, H., Henne, A., Hoster, F., Liesegang, H., Wiezer, A., Strittmatter, A., Hujer, S., Durre, P. & Gottschalk, G. ( 2004; ). The complete genome sequence of Propionibacterium acnes, a commensal of human skin. Science 305, 671–673.[CrossRef]
    [Google Scholar]
  6. Bull, A. T., Stach, J. E., Ward, A. C. & Goodfellow, M. ( 2005; ). Marine actinobacteria: perspectives, challenges, future directions. Antonie van Leeuwenhoek 87, 65–79.[CrossRef]
    [Google Scholar]
  7. Camus, J. C., Pryor, M. J., Medigue, C. & Cole, S. T. ( 2002; ). Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology 148, 2967–2973.
    [Google Scholar]
  8. Cerdeno-Tarraga, A. M., Efstratiou, A., Dover, L. G. & 23 other authors ( 2003; ). The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res 31, 6516–6523.[CrossRef]
    [Google Scholar]
  9. Chun, J., Bae, K. S., Moon, E. Y., Jung, S. O., Lee, H. K. & Kim, S. J. ( 2000; ). Nocardiopsis kunsanensis sp. nov., a moderately halophilic actinomycete isolated from a saltern. Int J Syst Evol Microbiol 50, 1909–1913.
    [Google Scholar]
  10. Davies, J. ( 1996; ). Origins and evolution of antibiotic resistance. Microbiologia 12, 9–16.
    [Google Scholar]
  11. Embley, T. M. & Stackebrandt, E. ( 1994; ). The molecular phylogeny and systematics of the actinomycetes. Annu Rev Microbiol 48, 257–289.[CrossRef]
    [Google Scholar]
  12. Endrizzi, J. A., Kim, H., Anderson, P. M. & Baldwin, E. P. ( 2004; ). Crystal structure of Escherichia coli cytidine triphosphate synthetase, a nucleotide-regulated glutamine amidotransferase/ATP-dependent amidoligase fusion protein and homologue of anticancer and antiparasitic drug targets. Biochemistry 43, 6447–6463.[CrossRef]
    [Google Scholar]
  13. Farrar, M. D., Ingham, E. & Holland, K. T. ( 2000; ). Heat shock proteins and inflammatory acne vulgaris: molecular cloning, overexpression and purification of a Propionibacterium acnes GroEL and DnaK homologue. FEMS Microbiol Lett 191, 183–186.[CrossRef]
    [Google Scholar]
  14. Fleischmann, R. D., Alland, D., Eisen, J. A. & 23 other authors ( 2002; ). Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 184, 5479–5490.[CrossRef]
    [Google Scholar]
  15. Garnier, T., Eiglmeier, K., Camus, J. C. & 19 other authors ( 2003; ). The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci U S A 100, 7877–7882.[CrossRef]
    [Google Scholar]
  16. Garrity, G. M. & Holt, J. G. ( 2001; ). The road map to the Manual. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 119–166. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  17. Goodfellow, M. & Williams, S. T. ( 1983; ). Ecology of actinomycetes. Annu Rev Microbiol 37, 189–216.[CrossRef]
    [Google Scholar]
  18. Griffiths, E. & Gupta, R. S. ( 2004a; ). Distinctive protein signatures provide molecular markers and evidence for the monophyletic nature of the Deinococcus-Thermus phylum. J Bacteriol 186, 3097–3107.[CrossRef]
    [Google Scholar]
  19. Griffiths, E. & Gupta, R. S. ( 2004b; ). Signature sequences in diverse proteins provide evidence for the late divergence of the order Aquificales. Int Microbiol 7, 41–52.
    [Google Scholar]
  20. Gupta, R. S. ( 1998; ). Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62, 1435–1491.
    [Google Scholar]
  21. Gupta, R. S. ( 2000; ). The phylogeny of proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol Rev 24, 367–402.[CrossRef]
    [Google Scholar]
  22. Gupta, R. S. ( 2001; ). The branching order and phylogenetic placement of species from completed bacterial genomes, based on conserved indels found in various proteins. Int Microbiol 4, 187–202.[CrossRef]
    [Google Scholar]
  23. Gupta, R. S. ( 2004; ). The phylogeny and signature sequences characteristics of Fibrobacteres, Chlorobi, and Bacteroidetes. Crit Rev Microbiol 30, 123–143.[CrossRef]
    [Google Scholar]
  24. Gupta, R. S. & Griffiths, E. ( 2002; ). Critical issues in bacterial phylogenies. Theor Popul Biol 61, 423–434.[CrossRef]
    [Google Scholar]
  25. Gupta, R. S., Pereira, M., Chandrasekera, C. & Johari, V. ( 2003; ). Molecular signatures in protein sequences that are characteristic of cyanobacteria and plastid homologues. Int J Syst Evol Microbiol 53, 1833–1842.[CrossRef]
    [Google Scholar]
  26. Ikeda, H., Ishikawa, J., Hanamoto, A., Shinose, M., Kikuchi, H., Shiba, T., Sakaki, Y., Hattori, M. & Omura, S. ( 2003; ). Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21, 526–531.[CrossRef]
    [Google Scholar]
  27. Ishikawa, J., Yamashita, A., Mikami, Y., Hoshino, Y., Kurita, H., Hotta, K., Shiba, T. & Hattori, M. ( 2004; ). The complete genomic sequence of Nocardia farcinica IFM 10152. Proc Natl Acad Sci U S A 101, 14925–14930.[CrossRef]
    [Google Scholar]
  28. Jeanmougin, F., Thompson, J. D., Gouy, M., Higgins, D. G. & Gibson, T. J. ( 1998; ). Multiple sequence alignment with clustal x. Trends Biochem Sci 23, 403–405.[CrossRef]
    [Google Scholar]
  29. Karlin, S., Mrázek, J. & Gentles, A. J. ( 2003; ). Genome comparisons and analysis. Curr Opin Struct Biol 13, 344–352.[CrossRef]
    [Google Scholar]
  30. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  31. Labeda, D. P. & Kroppenstedt, R. M. ( 2000; ). Phylogenetic analysis of Saccharothrix and related taxa: proposal for Actinosynnemataceae fam. nov. Int J Syst Evol Microbiol 50, 331–336.[CrossRef]
    [Google Scholar]
  32. Lechevalier, H. A. & Lechevalier, M. P. ( 1967; ). Biology of actinomycetes. Annu Rev Microbiol 21, 71–100.[CrossRef]
    [Google Scholar]
  33. Leyden, J. J. ( 2001; ). The evolving role of Propionibacterium acnes in acne. Semin Cutan Med Surg 20, 139–143.[CrossRef]
    [Google Scholar]
  34. Ludwig, W. & Klenk, H.-P. ( 2001; ). Overview: a phylogenetic backbone and taxonomic framework for procaryotic systematics. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 49–65. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  35. Maidak, B. L., Cole, J. R., Lilburn, T. G. & 7 other authors ( 2001; ). The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29, 173–174.[CrossRef]
    [Google Scholar]
  36. Michel, H., Behr, J., Harrenga, A. & Kannt, A. ( 1998; ). Cytochrome c oxidase: structure and spectroscopy. Annu Rev Biophys Biomol Struct 27, 329–356.[CrossRef]
    [Google Scholar]
  37. Monteiro-Vitorello, C. B., Camargo, L. E., Van Sluys, M. A. & 41 other authors ( 2004; ). The genome sequence of the gram-positive sugarcane pathogen Leifsonia xyli subsp. xyli. Mol Plant Microbe Interact 17, 827–836.[CrossRef]
    [Google Scholar]
  38. Oren, A. ( 2004; ). Prokaryote diversity and taxonomy: current status and future challenges. Philos Trans R Soc Lond B Biol Sci 359, 623–638.[CrossRef]
    [Google Scholar]
  39. Raoult, D., Ogata, H., Audic, S., Robert, C., Suhre, K., Drancourt, M. & Claverie, J. M. ( 2003; ). Tropheryma whipplei Twist: a human pathogenic actinobacteria with a reduced genome. Genome Res 13, 1800–1809.
    [Google Scholar]
  40. Richert, K., Brambilla, E. & Stackebrandt, E. ( 2005; ). Development of PCR primers specific for the amplification and direct sequencing of gyrB genes from microbacteria, order Actinomycetales. J Microbiol Methods 60, 115–123.[CrossRef]
    [Google Scholar]
  41. Roller, C., Ludwig, W. & Schleifer, K. H. ( 1992; ). Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes. J Gen Microbiol 138, 167–175.
    [Google Scholar]
  42. Schell, M. A., Karmirantzou, M., Snel, B. & 9 other authors ( 2002; ). The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci U S A 99, 14422–14427.[CrossRef]
    [Google Scholar]
  43. Schrempf, H. ( 2001; ). Recognition and degradation of chitin by streptomycetes. Antonie van Leeuwenhoek 79, 285–289.[CrossRef]
    [Google Scholar]
  44. Sekine, S., Nureki, O., Dubois, D. Y., Bernier, S., Chenevert, R., Lapointe, J., Vassylyev, D. G. & Yokoyama, S. ( 2003; ). ATP binding by glutamyl-tRNA synthetase is switched to the productive mode by tRNA binding. EMBO J 22, 676–688.[CrossRef]
    [Google Scholar]
  45. Smith, D. R., Richterich, P., Rubenfield, M. & 22 other authors ( 1997; ). Multiplex sequencing of 1·5 Mb of the Mycobacterium leprae genome. Genome Res 7, 802–819.
    [Google Scholar]
  46. Stach, J. E., Maldonado, L. A., Ward, A. C., Goodfellow, M. & Bull, A. T. ( 2003; ). New primers for the class Actinobacteria: application to marine and terrestrial environments. Environ Microbiol 5, 828–841.[CrossRef]
    [Google Scholar]
  47. Stackebrandt, E., Rainey, F. A. & Ward-Rainey, N. L. ( 1997; ). Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47, 479–491.[CrossRef]
    [Google Scholar]
  48. Sutcliffe, I. C. & Harrington, D. J. ( 2002; ). Pattern searches for the identification of putative lipoprotein genes in Gram-positive bacterial genomes. Microbiology 148, 2065–2077.
    [Google Scholar]
  49. Ueda, K., Yamashita, A., Ishikawa, J., Shimada, M., Watsuji, T., Morimura, K., Ikeda, H., Hattori, M. & Beppu, T. ( 2004; ). Genome sequence of Symbiobacterium thermophilum, an uncultivable bacterium that depends on microbial commensalism. Nucleic Acids Res 32, 4937–4944.[CrossRef]
    [Google Scholar]
  50. Van de Peer, Y. & De Wachter, R. ( 1994; ). treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10, 569–570.
    [Google Scholar]
  51. Warren, R., Hsiao, W. W., Kudo, H. & 23 other authors ( 2004; ). Functional characterization of a catabolic plasmid from polychlorinated-biphenyl-degrading Rhodococcus sp. strain RHA1. J Bacteriol 186, 7783–7795.[CrossRef]
    [Google Scholar]
  52. Woese, C. R. ( 1987; ). Bacterial evolution. Microbiol Rev 51, 221–271.
    [Google Scholar]
  53. Woese, C. R., Olsen, G. J., Ibba, M. & Soll, D. ( 2000; ). Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol Rev 64, 202–236.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63785-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63785-0
Loading

Data & Media loading...

[PDF of Supplementary Figs S1-S3](55 KB)

PDF

[PDF of Supplementary Tables S1 and S2](18 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error