1887

Abstract

sp. nov. is a Gram-negative non-motile rod that was isolated from a saltern in the Cabo de Gata-Níjar wildlife reserve in Almería, south-east Spain. It is moderately halophilic, capable of growth at concentrations of 5–25 % w/v sea-salt mixture, the optimum being 7·5 % w/v. It is chemo-organotrophic and strictly aerobic, produces catalase but not oxidase, does not produce acid from any sugar and does not synthesize hydrolytic enzymes. The most notable difference between this micro-organism and other species is that it is very fastidious in its use of a carbon source. It forms mucoid colonies due to the production of an exopolysaccharide. Its G+C content is 63·5 mol%. A comparison of 16S rRNA gene sequences confirmed its relationship to species. The most closely related species is with 95·8 % similarity between their 16S rRNA gene sequences. DNA–DNA hybridization with is 10·1 %. Its major fatty acids are 18 : 17, 16 : 0, 16 : 17/15 : 0 iso 2-OH, 12 : 0 3-OH, 12 : 0, 11-methyl 18 : 17 and 10 : 0. The proposed name is sp. nov., with strain M8 (=CECT 7050=LMG 22904) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63676-0
2005-09-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/5/ijs552007.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63676-0&mimeType=html&fmt=ahah

References

  1. Arahal, D. R., Ludwig, W., Schleifer, K. H. & Ventosa, A. ( 2002; ). Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses. Int J Syst Evol Microbiol 52, 241–249.
    [Google Scholar]
  2. Arias, S., del Moral, A., Ferrer, M. R., Quesada, E. & Béjar, V. ( 2003; ). Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology. Extremophiles 7, 319–326.[CrossRef]
    [Google Scholar]
  3. Béjar, V., Llamas, I., Calvo, C. & Quesada, E. ( 1998; ). Characterization of exopolysaccharides produced by 19 halophilic strains of the species Halomonas eurihalina. J Biotechnol 61, 135–141.[CrossRef]
    [Google Scholar]
  4. Bouchotroch, S., Quesada, E., del Moral, A., Llamas, I. & Béjar, V. ( 2001; ). Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 51, 1625–1632.[CrossRef]
    [Google Scholar]
  5. Brosius, J., Palmer, M. L., Kennedy, P. J. & Noller, H. F. ( 1978; ). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A 75, 4801–4805.[CrossRef]
    [Google Scholar]
  6. Calvo, C., Martínez-Checa, F., Toledo, F. L., Porcel, J. & Quesada, E. ( 2002; ). Characteristics of bioemulsifiers synthesised in crude oil media by Halomonas eurihalina and their effectiveness in the isolation of bacteria able to grow in the presence of hydrocarbons. Appl Microbiol Biotechnol 60, 347–351.[CrossRef]
    [Google Scholar]
  7. Dobson, S. J. & Franzmann, P. D. ( 1996; ). Unification of the genera Deleya (Baumann et al. 1983), Halomonas ( Vreeland et al. 1980 ), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. Int J Syst Bacteriol 46, 550–558.[CrossRef]
    [Google Scholar]
  8. Dobson, S. J., James, S. R., Franzmann, P. D. & McMeekin, T. A. ( 1990; ). Emended description of Halomonas halmophila (NCMB 1971T). Int J Syst Bacteriol 40, 462–463.[CrossRef]
    [Google Scholar]
  9. Ferragut, C. & Leclerc, H. ( 1976; ). Étude comparative des méthodes de détermination du Tm de l'ADN bacterien. Ann Microbiol 127A, 223–235 (in French).
    [Google Scholar]
  10. Franzmann, P. D., Wehmeyer, U. & Stackebrandt, E. ( 1988; ). Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya. Syst Appl Microbiol 11, 16–19.[CrossRef]
    [Google Scholar]
  11. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  12. Lind, E. & Ursing, J. ( 1986; ). Clinical strains of Enterobacter agglomerans (synonyms: Erwinia herbicola, Erwinia milletiae) identified by DNA-DNA-hybridization. Acta Pathol Microbiol Immunol Scand Sect B 94, 205–213.
    [Google Scholar]
  13. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  14. Martínez-Cánovas, M. J., Quesada, E., Llamas, I. & Béjar, V. ( 2004a; ). Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 54, 733–737.[CrossRef]
    [Google Scholar]
  15. Martínez-Cánovas, M. J., Béjar, V., Martínez-Checa, F. & Quesada, E. ( 2004b; ). Halomonas anticariensis sp. nov., from Fuente de Piedra, a saline-wetland wildfowl reserve in Málaga, southern Spain. Int J Syst Evol Microbiol 54, 1329–1332.[CrossRef]
    [Google Scholar]
  16. Martínez-Cánovas, M. J., Quesada, E., Martínez-Checa, F. & Béjar, V. ( 2004c; ). A taxonomic study to establish the relationship between exopolysaccharide-producing bacterial strains living in diverse hypersaline habitats. Curr Microbiol 48, 348–353.[CrossRef]
    [Google Scholar]
  17. Martínez-Checa, F., Toledo, F. L., Vilchez, R., Quesada, E. & Calvo, C. ( 2002; ). Yield production, chemical composition, and functional properties of emulsifier H28 synthesized by Halomonas eurihalina strain H-28 in media containing various hydrocarbons. Appl Microbiol Biotechnol 58, 358–363.[CrossRef]
    [Google Scholar]
  18. Mata, J. A., Martínez-Cánovas, J., Quesada, E. & Béjar, V. ( 2002; ). A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25, 360–375.[CrossRef]
    [Google Scholar]
  19. Moraine, R. A. & Rogovin, P. ( 1966; ). Kinetics of polysaccharide B-1459 fermentation. Biotechnol Bioeng 8, 511–524.[CrossRef]
    [Google Scholar]
  20. Quesada, E., Valderrama, M. J., Bejar, V., Ventosa, A., Gutierrez, M. C., Ruiz-Berraquero, F. & Ramos-Cormenzana, A. ( 1990; ). Volcaniella eurihalina gen. nov., sp. nov., a moderately halophilic nonmotile Gram-negative rod. Int J Syst Bacteriol 40, 261–267.[CrossRef]
    [Google Scholar]
  21. Quesada, E., Béjar, V., Ferrer, M. R. & 8 other authors ( 2004; ). Moderately halophilic, exopolysaccharide-producing bacteria. In Halophilic Microorganisms, pp. 297–314. Edited by A. Ventosa. Heidelberg: Springer.
  22. Rodríguez-Valera, F., Rúiz-Berraquero, F. & Ramos-Cormenzana, A. ( 1981; ). Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microb Ecol 7, 235–243.[CrossRef]
    [Google Scholar]
  23. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B. & Erlich, H. A. ( 1988; ). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491.[CrossRef]
    [Google Scholar]
  24. Sneath, P. H. A. & Sokal, R. R. ( 1973; ). Numerical Taxonomy. The Principles and Practice of Numerical Classification. San Francisco: Freeman, Williams & Wilkins.
  25. Sokal, R. R. & Michener, C. D. ( 1958; ). A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 38, 1409–1438.
    [Google Scholar]
  26. Thompson, J. D., Gibson, T. J., Plewniak, K., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  27. Ventosa, A., Nieto, J. J. & Oren, A. ( 1998; ). Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62, 504–544.
    [Google Scholar]
  28. Vreeland, R. H., Litchfield, C. D., Martin, E. L. & Elliot, E. ( 1980; ). Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30, 485–495.[CrossRef]
    [Google Scholar]
  29. Ziemke, F., Höfle, M. G., Lalucat, J. & Rosselló-Mora, R. ( 1998; ). Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48, 179–186.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63676-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63676-0
Loading

Data & Media loading...

Supplements

Dendrogram based on the simple-matching coefficient and UPGMA [PDF](15 KB)

PDF

Phylogenetic relationships between and other species plus other taxa of Gram-negative halophilic bacteria [PDF](18 KB)

PDF

Transmission electron micrograph of M8 [PDF](183 KB)

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error