1887

Abstract

Eleven strains of anaerobic Gram-negative bacilli isolated from the human oral cavity were subjected to a comprehensive range of phenotypic and genotypic tests and were found to comprise two homogeneous groups, designated E2 and E4. 16S rRNA gene sequence analysis revealed that members of both groups belonged to the genus but were distinct from any species with validly published names. This distinction was confirmed by DNA–DNA hybridization and phenotypic tests. Two novel species are therefore proposed: sp. nov. (group E2) and (group E4). Both species are saccharolytic; the end-products of fermentation for are acetic, propionic and succinic acids, while produces acetic and succinic acids with minor amounts of isovaleric and isobutyric acids. The G+C content of the DNA of the type strain of is 51 mol% and that of is 52 mol%. The type strain for is E9.34 (=DSM 16973=CCUG 50419) and that for is E9.33 (=DSM 16972=CCUG 50418).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63634-0
2005-07-01
2019-09-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/4/ijs551551.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63634-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Debelian, G. J., Olsen, I. & Tronstad, L. ( 1997; ). Distinction of Prevotella intermedia and Prevotella nigrescens from endodontic bacteremia through their fatty acid contents. Anaerobe 3, 61–68.[CrossRef]
    [Google Scholar]
  3. Downes, J., Munson, M. & Wade, W. G. ( 2003; ). Dialister invisus sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol 53, 1937–1940.[CrossRef]
    [Google Scholar]
  4. Felsenstein, J. ( 1993; ). phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  5. Hall, T. ( 2004; ). BioEdit. Biological sequence alignment editor for Win95/98/NT/2K/XP. http://www.mbio.ncsu.edu/BioEdit/bioedit.html
  6. Holdeman, L. V. H., Cato, E. P. & Moore, W. E. C. ( 1977; ). Anaerobe Laboratory Manual, 4th edn. Blacksburg, VA: Virginia Polytechnic Institute and State University.
  7. Huß, V. A. R., Festl, H. & Schleifer, K.-H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridisation from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  8. Jousimies-Somer, H., Summanen, P., Citron, D. M., Baron, E. J., Wexler, H. M. & Finegold, S. M. ( 2002; ). Wadsworth Anaerobic Bacteriology Manual, 6th edn. Belmont, CA: Star Publishing.
  9. Kroes, I., Lepp, P. W. & Relman, D. A. ( 1999; ). Bacterial diversity within the human subgingival crevice. Proc Natl Acad Sci U S A 96, 14547–14552.[CrossRef]
    [Google Scholar]
  10. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester, UK: Wiley.
  11. Logar, R. M., Zorec, M. & Kopecny, J. ( 2001; ). Reliable identification of Prevotella and Butyrivibrio spp. from rumen by fatty acid methyl ester profiles. Folia Microbiol 46, 57–59.[CrossRef]
    [Google Scholar]
  12. Moore, L. V., Bourne, D. M. & Moore, W. E. ( 1994; ). Comparative distribution and taxonomic value of cellular fatty acids in thirty-three genera of anaerobic Gram-negative bacilli. Int J Syst Bacteriol 44, 338–347.[CrossRef]
    [Google Scholar]
  13. Munson, M. A., Pitt-Ford, T., Chong, B., Weightman, A. & Wade, W. G. ( 2002; ). Molecular and cultural analysis of the microflora associated with endodontic infections. J Dent Res 81, 761–766.[CrossRef]
    [Google Scholar]
  14. Munson, M. A., Banerjee, A., Watson, T. F. & Wade, W. G. ( 2004; ). Molecular analysis of the microflora associated with dental caries. J Clin Microbiol 42, 3023–3029.[CrossRef]
    [Google Scholar]
  15. Page, R. D. M. ( 1996; ). treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  16. Radcliffe, C. E., Korachi, M. A. O., Könönen, E., Boote, V. & Drucker, D. B. ( 2001; ). Phospholipid analogue distribution of Prevotella pallens and related species analysed by fast atom bombardment mass spectrometry. Anaerobe 7, 87–91.[CrossRef]
    [Google Scholar]
  17. Sakamoto, M., Suzuki, M., Huang, Y., Umeda, M., Ishikawa, I. & Benno, Y. ( 2004; ). Prevotella shahii sp. nov. and Prevotella salivae sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol 54, 877–883.[CrossRef]
    [Google Scholar]
  18. Shah, H. N. & Collins, D. M. ( 1990; ). Prevotella, a new genus to include Bacteroides melaninogenicus and related species formerly classified in the genus Bacteroides. Int J Syst Bacteriol 40, 205–208.[CrossRef]
    [Google Scholar]
  19. Sutcliffe, I. C. ( 2000; ). Characterisation of a lipomannan lipoglycan from the mycolic acid containing actinomycete Dietzia maris. Antonie van Leeuwenhoek 78, 195–201.[CrossRef]
    [Google Scholar]
  20. Tavana, A. M., Drucker, D. B., Hull, P. S. & Boote, V. ( 1998; ). Phospholipid molecular species distribution of oral Prevotella corporis clinical isolates. FEMS Immunol Med Microbiol 21, 57–64.[CrossRef]
    [Google Scholar]
  21. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  22. Wade, W. G., Downes, J., Dymock, D., Hiom, S. J., Weightman, A. J., Dewhirst, F. E., Paster, B. J., Tzellas, N. & Coleman, B. ( 1999; ). The family Coriobacteriaceae: reclassification of Eubacterium exiguum (Poco et al. 1996) and Peptostreptococcus heliotrinreducens (Lanigan 1976) as Slackia exigua gen. nov., comb. nov. and Slackia heliotrinireducens gen. nov., comb. nov., and Eubacterium lentum (Prevot 1938) as Eggerthella lenta gen. nov., comb. nov. Int J Syst Bacteriol 49, 595–600.[CrossRef]
    [Google Scholar]
  23. Willems, A. & Collins, M. D. ( 1995; ). 16S rRNA gene similarities indicate that Hallella seregens (Moore and Moore) and Mitsuokella dentalis (Haapsalo et al.) are genealogically highly related and are members of the genus Prevotella: emended description of the genus Prevotella (Shah and Collins) and description of Prevotella dentalis comb. nov. Int J Syst Bacteriol 45, 832–836.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63634-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63634-0
Loading

Data & Media loading...

Transmission electron micrographs of E9.33 (a) and E9.34 (b). Ultrathin sections showing the Gram-negative cell wall and the cytoplasmic membrane. Bars, 100 nm.

IMAGE

Transmission electron micrographs of E9.33 (a) and E9.34 (b). Ultrathin sections showing the Gram-negative cell wall and the cytoplasmic membrane. Bars, 100 nm.

IMAGE

Phylogenetic tree based on 16S rRNA gene sequence comparisons over 1411 aligned bases showing relationship between sp. nov., sp. nov. and related species. [PDF](16 KB)

PDF

FAME data for sp. nov. (group E2) and sp. nov. (group E4) in comparison with previously published analyses of fatty acid composition in species. [PDF](16 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error