1887

Abstract

A nitrogen-fixing bacterium, designated strain 6H33b, was isolated from a compost pile in Japan. The nitrogenase activity of this strain was detected based on its acetylene-reducing activity under low oxygen concentrations (2–4 %). An analysis of the genes responsible for nitrogen fixation in this strain, and , indicated a close relationship to those of A15 (A1501). Sequence similarity searches based on the 16S rRNA gene sequences showed that strain 6H33b belongs within the genus ; closest similarity was with (97·3 %). A comparison of several taxonomic characteristics of 6H33b with those of and some type strains of the genus indicated that 6H33b could be distinguished from based on the presence of nitrogen fixation ability, the absence of nitrate reduction and denitrification abilities and the utilization of some sugars and organic acids. Phylogenetic analyses and the results of DNA–DNA hybridization experiments also indicated that strain 6H33b represents a species distinct from . From these results, it is proposed that strain 6H33b (=ATCC BAA-1049=JCM 12708) is classified as the type strain of a novel species of the genus under the name sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63586-0
2005-07-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/4/ijs551539.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63586-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Bergersen, F. J. ( 1991; ). Physiological control of nitrogenase and uptake hydrogenase. In Biology and Biochemistry of Nitrogen Fixation, pp. 76–102. Edited by M. J. Dilworth & A. R. Glenn. Amsterdam: Elsevier.
  3. Brosius, J., Palmer, M. L., Kennedy, P. J. & Noller, H. F. ( 1978; ). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A 75, 4801–4805.[CrossRef]
    [Google Scholar]
  4. Bürgmann, H., Widmer, F., Von Sigler, W. & Zeyer, J. ( 2004; ). New molecular screening tools for analysis of free-living diazotrophs in soil. Appl Environ Microbiol 70, 240–247.[CrossRef]
    [Google Scholar]
  5. DeLong, E. F. ( 1992; ). Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89, 5685–5689.[CrossRef]
    [Google Scholar]
  6. Desnoues, N., Lin, M., Guo, X., Ma, L., Carreño-Lopez, R. & Elmerich, C. ( 2003; ). Nitrogen fixation genetics and regulation in a Pseudomonas stutzeri strain associated with rice. Microbiology 149, 2251–2262.[CrossRef]
    [Google Scholar]
  7. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  8. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  9. Felsenstein, J. ( 2002; ). phylip (Phylogeny Inference Package), version 3.6 (alpha3). Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  10. Hiraishi, A. ( 1992; ). Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett Appl Microbiol 15, 210–213.[CrossRef]
    [Google Scholar]
  11. Hiraishi, A., Shin, Y. K., Ueda, Y. & Sugiyama, J. ( 1994; ). Automated sequencing of PCR-amplified 16S rDNA on ‘Hydrolink’ gels. J Microbiol Methods 19, 145–154.[CrossRef]
    [Google Scholar]
  12. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  13. King, E. O., Ward, M. K. & Raney, D. E. ( 1954; ). Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44, 301–307.
    [Google Scholar]
  14. Krotzky, A. & Werner, D. ( 1987; ). Nitrogen fixation in Pseudomonas stutzeri. Arch Microbiol 147, 48–57.[CrossRef]
    [Google Scholar]
  15. Lelliott, R. A., Billing, E. & Hayward, A. C. ( 1966; ). A determinative scheme for the fluorescent plant pathogenic pseudomonads. J Appl Bacteriol 29, 470–489.[CrossRef]
    [Google Scholar]
  16. Luisetti, J., Prunier, J.-P. & Gardan, L. ( 1972; ). Un milieu pour la mise en évidence de la production d'un pigment fluorescent par Pseudomonas mors-prunorum f. sp. persicae. Ann Phytopathol 4, 295–296 (in French).
    [Google Scholar]
  17. Page, R. D. M. ( 1996; ). treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  18. Palleroni, N. J. ( 1984; ). Genus I. Pseudomonas Migula 1894. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 141–199. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  19. Pandey, K. K., Mayilraj, S. & Chakrabarti, T. ( 2002; ). Pseudomonas indica sp. nov., a novel butane-utilizing species. Int J Syst Evol Microbiol 52, 1559–1567.[CrossRef]
    [Google Scholar]
  20. Pearson, W. R. ( 2000; ). Flexible sequence similarity searching with the fasta3 program package. Methods Mol Biol 132, 185–219.
    [Google Scholar]
  21. Perego, M., Spiegelman, G. B. & Hoch, J. A. ( 1988; ). Structure of the gene for the transition state regulator, abrB: regulator synthesis is controlled by the spo0A sporulation gene in Bacillus subtilis. Mol Microbiol 2, 689–699.[CrossRef]
    [Google Scholar]
  22. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  23. Stanier, R. Y., Palleroni, N. J. & Doudoroff, M. ( 1966; ). The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43, 159–271.[CrossRef]
    [Google Scholar]
  24. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  25. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  26. Vermeiren, H., Willems, A., Schoofs, G., de Mot, R., Keijers, V., Hai, W. & Vanderleyden, J. ( 1999; ). The rice inoculant strain Alcaligenes faecalis A15 is a nitrogen-fixing Pseudomonas stutzeri. Syst Appl Microbiol 22, 215–224.[CrossRef]
    [Google Scholar]
  27. Young, J. P. W. ( 1992; ). Phylogenetic classification of nitrogen-fixing organisms. In Biological Nitrogen Fixation, pp. 43–86. Edited by G. Stacey, R. H. Burris & H. J. Evans. New York: Chapman & Hall.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63586-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63586-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 1539 - 1544

Phylogenetic tree based on the sequence of 6H33b and related or sequences. [PDF](23 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error