1887

Abstract

The obligately intracellular coccoid bacterium UWE25, a symbiont of spp., was previously identified as being related to chlamydiae based upon the presence of a chlamydia-like developmental cycle and its 16S rRNA gene sequence. Analysis of its complete genome sequence demonstrated that UWE25 shows many characteristic features of chlamydiae, including dependency on host-derived metabolites, composition of the cell envelope and the ability to thrive as an energy parasite within the cells of its eukaryotic host. Phylogenetic analysis of 44 ribosomal proteins further confirmed the affiliation of UWE25 to the ‘’. Within this phylum, UWE25 could be assigned to the family based on comparative analyses of the 16S rRNA, 23S rRNA and endoribonuclease P RNA genes. The distinct dissimilarities from its closest relative, Bn (7·1, 9·7 and 28·8 %, respectively), observed in this analysis justify its classification in a new genus. Therefore, the name ‘ Protochlamydia amoebophila’ is proposed for the designation of the sp. symbiont UWE25 (=ATCC PRA-7).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63572-0
2005-09-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/5/ijs551863.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63572-0&mimeType=html&fmt=ahah

References

  1. Amann, R., Springer, N., Schönhuber, W., Ludwig, W., Schmid, E. N., Müller, K. D. & Michel, R. ( 1997; ). Obligate intracellular bacterial parasites of acanthamoebae related to Chlamydia spp. Appl Environ Microbiol 63, 115–121.
    [Google Scholar]
  2. Everett, K. D. E., Bush, R. M. & Andersen, A. A. ( 1999; ). Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol 49, 415–440.[CrossRef]
    [Google Scholar]
  3. Felsenstein, J. ( 1989; ). phylip – Phylogeny inference package (version 3.2). Cladistics 5, 164–166.
    [Google Scholar]
  4. Fritsche, T. R., Gautom, R. K., Seyedirashti, S., Bergeron, D. L. & Lindquist, T. D. ( 1993; ). Occurrence of bacteria endosymbionts in Acanthamoeba spp. isolated from corneal and environmental specimens and contact lenses. J Clin Microbiol 31, 1122–1126.
    [Google Scholar]
  5. Fritsche, T. R., Sobek, D. & Gautom, R. K. ( 1998; ). Enhancement of in vitro cytopathogenicity by Acanthamoeba spp. following acquisition of bacterial endosymbionts. FEMS Microbiol Lett 166, 231–236.[CrossRef]
    [Google Scholar]
  6. Fritsche, T. R., Horn, M., Wagner, M., Herwig, R. P., Schleifer, K. H. & Gautom, R. K. ( 2000; ). Phylogenetic diversity among geographically dispersed Chlamydiales endosymbionts recovered from clinical and environmental isolates of Acanthamoeba spp. Appl Environ Microbiol 66, 2613–2619.[CrossRef]
    [Google Scholar]
  7. Gautom, R. K. & Fritsche, T. R. ( 1995; ). Transmissibility of bacterial endosymbionts between isolates of Acanthamoeba spp. J Eukaryot Microbiol 42, 452–456.[CrossRef]
    [Google Scholar]
  8. Haferkamp, I., Schmitz-Esser, S., Linka, N., Urbany, C., Collingro, A., Wagner, M., Horn, M. & Neuhaus, H. E. ( 2004; ). A candidate NAD+ transporter in an intracellular bacterial symbiont related to chlamydiae. Nature 432, 622–625.[CrossRef]
    [Google Scholar]
  9. Hartmann, E. & Hartmann, R. K. ( 2003; ). The enigma of ribonuclease P evolution. Trends Genet 19, 561–569.[CrossRef]
    [Google Scholar]
  10. Herrmann, B., Pettersson, B., Everett, K. D. E., Mikkelsen, N. E. & Kirsebom, L. A. ( 2000; ). Characterization of the rnpB gene and RNase P RNA in the order Chlamydiales. Int J Syst Evol Microbiol 50, 149–158.[CrossRef]
    [Google Scholar]
  11. Horn, M., Wagner, M., Müller, K. D., Schmid, E. N., Fritsche, T. R., Schleifer, K. H. & Michel, R. ( 2000; ). Neochlamydia hartmannellae gen. nov., sp. nov. (Parachlamydiaceae), an endoparasite of the amoeba Hartmannella vermiformis. Microbiology 146, 1231–1239.
    [Google Scholar]
  12. Horn, M., Collingro, A., Schmitz-Esser, S. & 10 other authors ( 2004; ). Illuminating the evolutionary history of chlamydiae. Science 304, 728–730.[CrossRef]
    [Google Scholar]
  13. Kalman, S., Mitchell, W., Marathe, R. & 7 other authors ( 1999; ). Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat Genet 21, 385–389.[CrossRef]
    [Google Scholar]
  14. Ludwig, W., Strunk, O., Westram, R. & 29 other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  15. Mahoney, J. B., Coombes, B. K. & Chernesky, M. A. ( 2003; ). Chlamydia and Chlamydophila. In Manual of Clinical Microbiology, 8th edn, pp. 991–1004. Edited by P. R. Murray. Washington, DC: American Society for Microbiology.
  16. Murray, R. G. E. & Schleifer, K. H. ( 1994; ). Taxonomic notes: a proposal for recording the properties of putative taxa of procaryotes. Int J Syst Bacteriol 44, 174–176.[CrossRef]
    [Google Scholar]
  17. Read, T. D., Brunham, R. C., Shen, C. & 22 other authors ( 2000; ). Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res 28, 1397–1406.[CrossRef]
    [Google Scholar]
  18. Read, T. D., Myers, G. S., Brunham, R. C. & 18 other authors ( 2003; ). Genome sequence of Chlamydophila caviae (Chlamydia psittaci GPIC): examining the role of niche-specific genes in the evolution of the Chlamydiaceae. Nucleic Acids Res 31, 2134–2147.[CrossRef]
    [Google Scholar]
  19. Schmitz-Esser, S., Linka, N., Collingro, A., Beier, C. L., Neuhaus, H. E., Wagner, M. & Horn, M. ( 2004; ). ATP/ADP translocases: a common feature of obligate intracellular amoebal symbionts related to chlamydiae and rickettsiae. J Bacteriol 186, 683–691.[CrossRef]
    [Google Scholar]
  20. Shirai, M., Hirakawa, H., Kimoto, M. & 8 other authors ( 2000; ). Comparison of whole genome sequences of Chlamydia pneumoniae J138 from Japan and CWL029 from USA. Nucleic Acids Res 28, 2311–2314.[CrossRef]
    [Google Scholar]
  21. Skriwan, C., Fajardo, M., Hägele, S., Horn, M., Wagner, M., Michel, R., Krohne, G., Schleicher, M., Hacker, J. & Steinert, M. ( 2002; ). Various bacterial pathogens and symbionts infect the soil amoeba Dictyostelium discoideum. Int J Med Microbiol 291, 615–624.[CrossRef]
    [Google Scholar]
  22. Stephens, R. S., Kalman, S., Lammel, C. & 9 other authors ( 1998; ). Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754–759.[CrossRef]
    [Google Scholar]
  23. Strimmer, K. & von Haeseler, A. ( 1996; ). Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol Biol Evol 13, 964–969.[CrossRef]
    [Google Scholar]
  24. Visvesvara, G. S. ( 1999; ). Pathogenic and opportunistic free-living amebae. In Manual of Clinical Microbiology, 7th edn, pp. 1383–1390. Edited by P. R. Murray, E. J. Baron, M. A. Pfaller, F. C. Tenover & R. H. Yolken. Washington, DC: American Society for Microbiology.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63572-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63572-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error