1887

Abstract

The phylogeny of enterobacterial species commonly found in clinical samples was analysed by comparing partial sequences of their elongation factor Tu gene () and of their F-ATPase -subunit gene (). An 884 bp fragment for and an 884 or 871 bp fragment for were sequenced for 96 strains representing 78 species from 31 enterobacterial genera. The sequence analysis exhibited an indel specific to and species, showing, for the first time, a tight phylogenetic affiliation between these two genera. Comprehensive and phylogenetic trees were constructed and are in agreement with each other. Monophyletic genera are , , , , , , and . Analogous trees based on 16S rRNA gene sequences available from databases were also reconstructed. The and phylogenies are in agreement with the 16S rRNA gene sequence analysis, and distance comparisons revealed that the and genes provide better discrimination for pairs of species belonging to the family . In conclusion, phylogeny based on and conserved genes allows discrimination between species of the .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63539-0
2005-09-01
2019-09-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/5/ijs552013.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63539-0&mimeType=html&fmt=ahah

References

  1. Abdulkarim, F. & Hughes, D. ( 1996; ). Homologous recombination between the tuf genes of Salmonella typhimurium. J Mol Biol 260, 506–522.[CrossRef]
    [Google Scholar]
  2. Abdulkarim, F., Tuohy, T. M., Buckingham, R. H. & Hughes, D. ( 1991; ). Missense substitutions lethal to essential functions of EF-Tu. Biochimie 73, 1457–1464.[CrossRef]
    [Google Scholar]
  3. Amann, R., Ludwig, W. & Schleifer, K. H. ( 1988a; ). β-Subunit of ATP-synthase: a useful marker for studying the phylogenetic relationship of eubacteria. J Gen Microbiol 134, 2815–2821.
    [Google Scholar]
  4. Amann, R., Sostak, P., Ludwig, W. & Schleifer, K. H. ( 1988b; ). Cloning and sequencing of genes encoding the beta subunits of the ATP-synthases from Enterobacter aerogenes and Flavobacterium ferrugineum. FEMS Microbiol Lett 50, 101–106.[CrossRef]
    [Google Scholar]
  5. Bercovier, H., Mollaret, H. H., Alonso, J. M., Brault, J., Fanning, G. R., Steigerwalt, A. G. & Brenner, D. J. ( 1980; ). Intra- and interspecies relatedness of Yersinia pestis by DNA hybridization and its relationship to Yersinia pseudotuberculosis. Curr Microbiol 4, 225–229.[CrossRef]
    [Google Scholar]
  6. Blattner, F. R., Plunkett, G., III, Bloch, C. A. & 14 other authors ( 1997; ). The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474.[CrossRef]
    [Google Scholar]
  7. Brenner, D. J. ( 1984; ). Facultatively anaerobic gram-negative rods. Family I. Enterobacteriaceae. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 408–420. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  8. Brenner, D. J. ( 1992; ). Additional genera of the Enterobacteriaceae. In The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, pp. 2922–2937. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  9. Brenner, D. J., Fanning, G. R., Skerman, F. J. & Falkow, S. ( 1972a; ). Polynucleotide sequence divergence among strains of Escherichia coli and closely related organisms. J Bacteriol 109, 953–965.
    [Google Scholar]
  10. Brenner, D. J., Fanning, G. R., Steigerwalt, A. G., Orskov, I. & Orskov, F. ( 1972b; ). Polynucleotide sequence relatedness among three groups of pathogenic Escherichia coli strains. Infect Immun 6, 308–315.
    [Google Scholar]
  11. Brenner, D. J., Richard, C., Steigerwalt, A. G., Asbury, M. A. & Mandel, M. ( 1980; ). Enterobacter gergoviae sp. nov.: a new species of Enterobacteriaceae found in clinical specimens and the environment. Int J Syst Bacteriol 30, 1–6.[CrossRef]
    [Google Scholar]
  12. Brenner, D. J., McWhorter, A. C., Knutson, J. K. & Steigerwalt, A. G. ( 1982a; ). Escherichia vulneris: a new species of Enterobacteriaceae associated with human wounds. J Clin Microbiol 15, 1133–1140.
    [Google Scholar]
  13. Brenner, D. J., Steigerwalt, A. G., Wathen, H. G., Gross, R. J. & Rowe, B. ( 1982b; ). Confirmation of aerogenic strains of Shigella boydii 13 and further study of Shigella serotypes by DNA relatedness. J Clin Microbiol 16, 432–436.
    [Google Scholar]
  14. Brenner, D. J., Fanning, G. R., Leete Knutson, J. K., Steigerwalt, A. G. & Krichevsky, M. I. ( 1984; ). Attempts to classify Herbicola group-Enterobacter agglomerans strains by deoxyribonucleic acid hybridization and phenotypic tests. Int J Syst Bacteriol 34, 45–55.[CrossRef]
    [Google Scholar]
  15. Brenner, D. J., McWhorter, A. C., Kai, A., Steigerwalt, A. G. & Farmer, J. J., III ( 1986; ). Enterobacter asburiae sp. nov., a new species found in clinical specimens, and reassignment of Erwinia dissolvens and Erwinia nimipressuralis to the genus Enterobacter as Enterobacter dissolvens comb. nov. and Enterobacter nimipressuralis comb. nov. J Clin Microbiol 23, 1114–1120.
    [Google Scholar]
  16. Brenner, D. J., Grimont, P. A., Steigerwalt, A. G., Fanning, G. R., Ageron, E. & Riddle, C. F. ( 1993; ). Classification of citrobacteria by DNA hybridization: designation of Citrobacter farmeri sp. nov., Citrobacter youngae sp. nov., Citrobacter braakii sp. nov., Citrobacter werkmanii sp. nov., Citrobacter sedlakii sp. nov., and three unnamed Citrobacter genomospecies. Int J Syst Bacteriol 43, 645–658.[CrossRef]
    [Google Scholar]
  17. Brenner, D. J., O'Hara, C. M., Grimont, P. A. & 7 other authors ( 1999; ). Biochemical identification of Citrobacter species defined by DNA hybridization and description of Citrobacter gillenii sp. nov. (formerly Citrobacter genomospecies 10) and Citrobacter murliniae sp. nov. (formerly Citrobacter genomospecies 11). J Clin Microbiol 37, 2619–2624.
    [Google Scholar]
  18. Christensen, H. & Olsen, J. E. ( 1998; ). Phylogenetic relationships of Salmonella based on DNA sequence comparison of atpD encoding the beta subunit of ATP synthase. FEMS Microbiol Lett 161, 89–96.
    [Google Scholar]
  19. Christensen, H., Nordentoft, S. & Olsen, J. E. ( 1998; ). Phylogenetic relationships of Salmonella based on rRNA sequences. Int J Syst Bacteriol 48, 605–610.[CrossRef]
    [Google Scholar]
  20. Cilia, V., Lafay, B. & Christen, R. ( 1996; ). Sequence heterogeneities among 16S ribosomal RNA sequences, and their effect on phylogenetic analyses at the species level. Mol Biol Evol 13, 451–461.[CrossRef]
    [Google Scholar]
  21. Clayton, R. A., Sutton, G., Hinkle, P. S., Jr, Bult, C. & Fields, C. ( 1995; ). Intraspecific variation in small-subunit rRNA sequences in GenBank: why single sequences may not adequately represent prokaryotic taxa. Int J Syst Bacteriol 45, 595–599.[CrossRef]
    [Google Scholar]
  22. Dickey, R. S. & Zumoff, C. H. ( 1988; ). Emended description of Enterobacter cancerogenus comb. nov. (formerly Erwinia cancerogena). Int J Syst Bacteriol 38, 371–374.[CrossRef]
    [Google Scholar]
  23. Drancourt, M., Bollet, C., Carta, A. & Rousselier, P. ( 2001; ). Phylogenetic analyses of Klebsiella species delineate Klebsiella and Raoultella gen. nov., with description of Raoultella ornithinolytica comb. nov., Raoultella terrigena comb. nov. and Raoultella planticola comb. nov. Int J Syst Evol Microbiol 51, 925–932.[CrossRef]
    [Google Scholar]
  24. Farmer, J. J., III, Asbury, M. A., Hickman, F. W., Brenner, D. J. & the Enterobacteriaceae Study Group ( 1980; ). Enterobacter sakazakii: a new species of “Enterobacteriaceae” isolated from clinical specimens. Int J Syst Bacteriol 30, 569–584.[CrossRef]
    [Google Scholar]
  25. Farmer, J. J., III, Fanning, G. R., Davis, B. R., O'Hara, C. M., Riddle, C., Hickman-Brenner, F. W., Asbury, M. A., Lowery, V. A., III & Brenner, D. J. ( 1985a; ). Escherichia fergusonii and Enterobacter taylorae, two new species of Enterobacteriaceae isolated from clinical specimens. J Clin Microbiol 21, 77–81.
    [Google Scholar]
  26. Farmer, J. J., III, Davis, B. R., Hickman-Brenner, F. W. & 12 other authors ( 1985b; ). Biochemical identification of new species and biogroups of Enterobacteriaceae isolated from clinical specimens. J Clin Microbiol 21, 46–76.
    [Google Scholar]
  27. Fox, G. E., Wisotzkey, J. D. & Jurtshuk, P., Jr ( 1992; ). How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42, 166–170.[CrossRef]
    [Google Scholar]
  28. Gavini, F., Mergaert, J., Beji, A., Mielcarek, C., Izard, D., Kersters, K. & De Ley, J. ( 1989; ). Transfer of Enterobacter agglomerans (Beijerink 1888) Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov. Int J Syst Bacteriol 39, 337–345.[CrossRef]
    [Google Scholar]
  29. Grunberg-Manago, M. ( 1996; ). Regulation of the expression of aminoacyl-tRNA synthetases and translation factors. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 1432–1457. Edited by F. C. Neidhardt, R. I. Curtiss, J. L. Ingraham & 7 other editors. Washington, DC: American Society for Microbiology.
  30. Gupta, R. S. ( 1998; ). Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62, 1435–1491.
    [Google Scholar]
  31. Hartl, D. L. & Dykhuizen, D. E. ( 1984; ). The population genetics of Escherichia coli. Annu Rev Genet 18, 31–68.[CrossRef]
    [Google Scholar]
  32. Hedegaard, J., Steffensen, S. A., Norskov-Lauritsen, N., Mortensen, K. K. & Sperling-Petersen, H. U. ( 1999; ). Identification of Enterobacteriaceae by partial sequencing of the gene encoding translation initiation factor 2. Int J Syst Bacteriol 49, 1531–1538.[CrossRef]
    [Google Scholar]
  33. Hill, C. W. & Harnish, B. W. ( 1981; ). Inversions between ribosomal RNA genes of Escherichia coli. Proc Natl Acad Sci U S A 78, 7069–7072.[CrossRef]
    [Google Scholar]
  34. Hudson, L., Rossi, J. & Landy, A. ( 1981; ). Dual function transcripts specifying tRNA and mRNA. Nature 294, 422–427.[CrossRef]
    [Google Scholar]
  35. Ibrahim, A., Goebel, B. M., Liesack, W., Griffiths, M. & Stackebrandt, E. ( 1994; ). The phylogeny of the genus Yersinia based on 16S rDNA sequences. FEMS Microbiol Lett 114, 173–178.
    [Google Scholar]
  36. Izard, D., Gavini, F., Trinel, P. A. & Leclerc, H. ( 1981; ). Deoxyribonucleic acid relatedness between Enterobacter cloacae and Enterobacter amnigenus sp. nov. Int J Syst Bacteriol 31, 35–42.[CrossRef]
    [Google Scholar]
  37. Janda, J. M., Abbott, S. L. & Albert, M. J. ( 1999; ). Prototypal diarrheagenic strains of Hafnia alvei are actually members of the genus Escherichia. J Clin Microbiol 37, 2399–2401.
    [Google Scholar]
  38. Ke, D., Boissinot, M., Huletsky, A., Picard, F. J., Frenette, J., Ouellette, M., Roy, P. H. & Bergeron, M. G. ( 2000; ). Evidence for horizontal gene transfer in evolution of elongation factor Tu in enterococci. J Bacteriol 182, 6913–6920.[CrossRef]
    [Google Scholar]
  39. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  40. Kitch, T. T., Jacobs, M. R. & Appelbaum, P. C. ( 1994; ). Evaluation of RapID onE system for identification of 379 strains in the family Enterobacteriaceae and oxidase-negative, gram-negative nonfermenters. J Clin Microbiol 32, 931–934.
    [Google Scholar]
  41. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. New York: Wiley.
  42. Lawrence, J. G., Ochman, H. & Hartl, D. L. ( 1991; ). Molecular and evolutionary relationships among enteric bacteria. J Gen Microbiol 137, 1911–1921.[CrossRef]
    [Google Scholar]
  43. Le Minor, L., Veron, M. & Popoff, M. ( 1982; ). The taxonomy of Salmonella. Ann Microbiol 133, 223–243 (in French).
    [Google Scholar]
  44. Ludwig, W., Weizenegger, M., Betzl, D., Leidel, E., Lenz, T., Ludvigsen, A., Mollenhoff, D., Wenzig, P. & Schleifer, K. H. ( 1990; ). Complete nucleotide sequences of seven eubacterial genes coding for the elongation factor Tu: functional, structural and phylogenetic evaluations. Arch Microbiol 153, 241–247.[CrossRef]
    [Google Scholar]
  45. Ludwig, W., Neumaier, J., Klugbauer, N. & 9 other authors ( 1993; ). Phylogenetic relationships of bacteria based on comparative sequence analysis of elongation factor Tu and ATP-synthase beta-subunit genes. Antonie van Leeuwenhoek 64, 285–305.
    [Google Scholar]
  46. McLaughlin, I. J., Valentine, J. & Dodge, D. E. ( 2000; ). Intraspecies taxonomy of multiple clinical isolates from members of the family Enterobacteriaceae. In Abstracts of the 100th General Meeting of the American Society for Microbiology, Los Angeles, CA, USA, 24 May 2000, abstract no. R13, p. 629. Washington, DC: American Society for Microbiology.
  47. Mollet, C., Drancourt, M. & Raoult, D. ( 1997; ). rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol 26, 1005–1011.[CrossRef]
    [Google Scholar]
  48. Nelson, N. & Taiz, L. ( 1989; ). The evolution of H+-ATPases. Trends Biochem Sci 14, 113–116.[CrossRef]
    [Google Scholar]
  49. Palys, T., Nakamura, L. K. & Cohan, F. M. ( 1997; ). Discovery and classification of ecological diversity in the bacterial world: the role of DNA sequence data. Int J Syst Bacteriol 47, 1145–1156.[CrossRef]
    [Google Scholar]
  50. Perna, N. T., Plunkett, G., III, Burland, V. & 25 other authors ( 2001; ). Genome sequence of enterohaemorrhagic Escherichia coli O157 : H7. Nature 409, 529–533.[CrossRef]
    [Google Scholar]
  51. Reeves, M. W., Evins, G. M., Heiba, A. A., Plikaytis, B. D. & Farmer, J. J., III ( 1989; ). Clonal nature of Salmonella typhi and its genetic relatedness to other salmonellae as shown by multilocus enzyme electrophoresis, and proposal of Salmonella bongori comb. nov. J Clin Microbiol 27, 313–320.
    [Google Scholar]
  52. Saraste, M., Gay, N. J., Eberle, A., Runswick, M. J. & Walker, J. E. ( 1981; ). The atp operon: nucleotide sequence of the genes for the gamma, beta, and epsilon subunits of Escherichia coli ATP synthase. Nucleic Acids Res 9, 5287–5296.[CrossRef]
    [Google Scholar]
  53. Sela, S., Yogev, D., Razin, S. & Bercovier, H. ( 1989; ). Duplication of the tuf gene: a new insight into the phylogeny of eubacteria. J Bacteriol 171, 581–584.
    [Google Scholar]
  54. Selander, R. K., Li, J. & Nelson, K. ( 1996; ). Evolutionary genetics of Salmonella enterica. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 2691–2707. Edited by F. C. Neidhardt, R. I. Curtiss, J. L. Ingraham & 7 other editors. Washington, DC: American Society for Microbiology.
  55. Sharma, N. K., Doyle, P. W., Gerbasi, S. A. & Jessop, J. H. ( 1990; ). Identification of Yersinia species by the API 20E. J Clin Microbiol 28, 1443–1444.
    [Google Scholar]
  56. Skerman, V. B. D., McGowan, V. & Sneath, P. H. A. ( 1980; ). Approved lists of bacterial names. Int J Syst Bacteriol 30, 225–420.[CrossRef]
    [Google Scholar]
  57. Spröer, C., Mendrock, U., Swiderski, J., Lang, E. & Stackebrandt, E. ( 1999; ). The phylogenetic position of Serratia, Buttiauxella and some other genera of the family Enterobacteriaceae. Int J Syst Bacteriol 49, 1433–1438.[CrossRef]
    [Google Scholar]
  58. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  59. Steigerwalt, A. G., Fanning, G. R., Fife-Asbury, M. A. & Brenner, D. J. ( 1976; ). DNA relatedness among species of Enterobacter and Serratia. Can J Microbiol 22, 121–137.[CrossRef]
    [Google Scholar]
  60. Wang, R. F., Cao, W. W. & Cerniglia, C. E. ( 1997; ). Phylogenetic analysis and identification of Shigella spp. by molecular probes. Mol Cell Probes 11, 427–432.[CrossRef]
    [Google Scholar]
  61. Wayne, L. G., Brenner, D. J., Colwell, R. R. & 9 other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63539-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63539-0
Loading

Data & Media loading...

Phylogenetic trees for members of the based on (a), (b) and 16S rRNA gene (c) sequences, containing only those strains for which sequence information was available for all three genes. [PDF](326 KB)

PDF

DiMPP scatterplots of 16S rRNA vs (a) and (b) distances for 58 strains. [PDF](145 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error