1887

Abstract

Earthworms emit nitrous oxide (NO) via the activity of bacteria in their gut. Four NO-producing facultative aerobes, ED1, ED5, MH21 and MH72, were isolated from the gut of the earthworm . The isolates produced NO under conditions that simulated the microenvironment of the earthworm gut. ED1 and ED5 were Gram-negative, motile rods that carried out complete denitrification (i.e. the reduction of nitrate to N) and contained membranous -type cytochromes. ED1 grew optimally at 30 °C and pH 7. ED1 oxidized organic acids and reduced (per)chlorate, sulfate, nitrate and nitrite. The closest phylogenetic relative of ED1 was . ED5 grew optimally at 25 °C and pH 7. ED5 grew mainly on sugars, and nitrate and nitrite were used as alternative electron acceptors. The closest phylogenetic relatives of ED5 were and . MH21 and MH72 were motile, spore-forming, rod-shaped bacteria with a three-layered cell wall. Sugars supported the growth of MH21 and MH72. Cells of MH21 grew in chains, were linked by connecting filaments and contained membranous -type cytochromes. MH21 grew optimally at 30–35 °C and pH 7·7, grew by fermentation and reduced low amounts of nitrite to NO. The closest phylogenetic relatives of MH21 were and . Based on morphological, physiological and phylogenetic characteristics, ED1 (=DSM 15892=ATCC BAA-841), ED5 (=DSM 15936=ATCC BAA-842) and MH21 (=DSM 15890=ATCC BAA-844) are proposed as type strains of the novel species sp. nov., sp. nov. and sp. nov., respectively. MH72 is considered a new strain of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63484-0
2005-05-01
2019-09-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/3/ijs551255.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63484-0&mimeType=html&fmt=ahah

References

  1. Achenbach, L. A., Michaelidou, U., Bruce, R. A., Fryman, J. & Coates, J. D. ( 2001; ). Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position. Int J Syst Evol Microbiol 51, 527–533.
    [Google Scholar]
  2. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  3. Anderson, I. C. & Levine, J. S. ( 1986; ). Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers. Appl Environ Microbiol 51, 938–945.
    [Google Scholar]
  4. Bayer, M. E. & Easterbrook, K. ( 1991; ). Tubular spinae are long-distance connectors between bacteria. J Gen Microbiol 137, 1081–1086.[CrossRef]
    [Google Scholar]
  5. Bergey, D. H., Krieg, N. R. & Holt, J. G. ( 1990; ). Bergey's Manual of Systematic Bacteriology. Baltimore: Williams & Wilkins.
  6. Bernardet, J.-F., Segers, P., Vancanneyt, M., Berthe, F., Kersters, K. & Vandamme, P. ( 1996; ). Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46, 128–148.[CrossRef]
    [Google Scholar]
  7. Borken, W., Grundel, S. & Beese, F. ( 2000; ). Potential contribution of Lumbricus terrestris L. to carbon dioxide, methane and nitrous oxide fluxes from a forest soil. Biol Fertil Soils 32, 142–148.[CrossRef]
    [Google Scholar]
  8. Bulthuis, B. A., Rommens, C., Koningstein, G. M., Stouthamer, A. H. & van Verseveld, H. W. ( 1991; ). Formation of fermentation products and extracellular protease during anaerobic growth of Bacillus licheniformis in chemostat and batch-culture. Antonie van Leeuwenhoek 60, 355–371.[CrossRef]
    [Google Scholar]
  9. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M. ( 1977; ). Rapid method for base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef]
    [Google Scholar]
  10. Cataldo, D. A., Haroon, M., Schrader, L. E. & Young, V. L. ( 1975; ). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun in Soil Sci Plant Anal 6, 71–80.[CrossRef]
    [Google Scholar]
  11. Coates, J. D., Michaelidou, U., Bruce, R. A., O'Connor, S. M., Crespi, J. N. & Achenbach, L. A. ( 1999; ). Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl Environ Microbiol 65, 5234–5241.
    [Google Scholar]
  12. Cowan, S. T. ( 1974; ). Cowan & Steel's Manual for the Identification of Medical Bacteria, 2nd edn. New York: Cambridge University Press.
  13. Cummings, D. E., Caccavo, F., Spring, S. & Rosenzweig, R. F. ( 1999; ). Ferribacterium limneticum, gen. nov., sp. nov., an Fe(III)-reducing microorganism isolated from mining-impacted freshwater lake sediments. Arch Microbiol 171, 183–188.[CrossRef]
    [Google Scholar]
  14. Drake, H. L., Schramm, A. & Horn, M. ( 2005; ). Earthworm gut microbial biomes: their importance to soil microorganisms, denitrification, and the terrestrial production of the greenhouse gas N2O. In Intestinal Microorganisms of Termites and Other Invertebrates. Edited by H. König & A. Varma. New York: Springer (in press).
  15. Elo, S., Suominen, I., Kämpfer, P., Juhanoja, J., Salkinoja-Salonen, M. & Haahtela, K. ( 2001; ). Paenibacillus borealis sp. nov., a nitrogen-fixing species isolated from spruce forest humus in finland. Int J Syst Evol Microbiol 51, 535–545.
    [Google Scholar]
  16. Fröstl, J. M., Seifritz, C. & Drake, H. L. ( 1996; ). Effect of nitrate on the autotrophic metabolism of the acetogens Clostridium thermoautotrophicum and Clostridium thermoaceticum. J Bacteriol 178, 4597–4603.
    [Google Scholar]
  17. Furlong, M. A., Singleton, D. R., Coleman, D. C. & Whitman, W. B. ( 2002; ). Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus. Appl Environ Microbiol 68, 1265–1279.[CrossRef]
    [Google Scholar]
  18. Gadkari, D. ( 1984; ). Influence of herbicides Goltix and Sencor on nitrification. Zentralbl Mikrobiol 139, 623–631.
    [Google Scholar]
  19. Harrigan, W. F. & McCance, M. E. ( 1966; ). Laboratory Methods in Microbiology. London: Academic Press.
  20. Horn, M. A., Schramm, A. & Drake, H. L. ( 2003; ). The earthworm gut: an ideal habitat for ingested N2O-producing microorganisms. Appl Environ Microbiol 69, 1662–1669.[CrossRef]
    [Google Scholar]
  21. Hungate, R. E. ( 1969; ). A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B, 117–132.
    [Google Scholar]
  22. Ihssen, J., Horn, M. A., Matthies, C., Gößner, A., Schramm, A. & Drake, H. L. ( 2003; ). N2O-producing microrganisms in the gut of the earthworm Aporrectodea caliginosa are indicative of ingested soil bacteria. Appl Environ Microbiol 69, 1655–1661.[CrossRef]
    [Google Scholar]
  23. Karsten, G. R. & Drake, H. L. ( 1995; ). Comparative assessment of the aerobic and anaerobic microfloras of earthworm guts and forest soils. Appl Environ Microbiol 61, 1039–1044.
    [Google Scholar]
  24. Karsten, G. R. & Drake, H. L. ( 1997; ). Denitrifying bacteria in the earthworm gastrointestinal tract and in vivo emission of nitrous oxide (N2O) by earthworms. Appl Environ Microbiol 63, 1878–1882.
    [Google Scholar]
  25. Kuhner, C. H., Matthies, C., Acker, G., Schmittroth, M., Gößner, A. & Drake, H. L. ( 2000; ). Clostridium akagii sp. nov. and Clostridium acidisoli sp. nov.: acid-tolerant, N2-fixing clostridia isolated from acidic forest soil and litter. Int J Syst Evol Microbiol 50, 873–881.[CrossRef]
    [Google Scholar]
  26. Küsel, K., Dorsch, T., Acker, G., Stackebrandt, E. & Drake, H. L. ( 2000; ). Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium from acidic sediments. Int J Syst Evol Microbiol 50, 537–546.[CrossRef]
    [Google Scholar]
  27. Küsel, K., Karnholz, A., Trinkwalter, T., Devereux, R., Acker, G. & Drake, H. L. ( 2001; ). Physiological ecology of Clostridium glycolicum RD-1, an aerotolerant acetogen isolated from sea grass roots. Appl Environ Microbiol 67, 4734–4741.[CrossRef]
    [Google Scholar]
  28. Ludwig, W., Strunk, O., Klugbauer, S., Klugbauer, N., Weizenegger, M., Neumaier, J., Bachleitner, M. & Schleifer, K.-H. ( 1998; ). Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19, 554–568.[CrossRef]
    [Google Scholar]
  29. Matthies, C., Griesshammer, A., Schmittroth, M. & Drake, H. L. ( 1999; ). Evidence for involvement of gut-associated denitrifying bacteria in emission of nitrous oxide (N2O) by earthworms obtained from garden and forest soils. Appl Environ Microbiol 65, 3599–3604.
    [Google Scholar]
  30. Matthies, C., Kuhner, C. H., Acker, G. & Drake, H. L. ( 2001; ). Clostridium uliginosum sp. nov., a novel acid-tolerant, anaerobic bacterium with connecting filaments. Int J Syst Evol Microbiol 51, 1119–1125.[CrossRef]
    [Google Scholar]
  31. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Microbiol 39, 159–167.
    [Google Scholar]
  32. Reichenbach, H. ( 1989; ). Order I. Cytophagales Leadbetter 1974, 99AL. In Bergey's Manual of Systematic Bacteriology, vol. 3, pp. 2011–2082. Edited by J. T. Staley, M. P. Bryant, N. Pfennig & J. G. Holt. Baltimore: Williams & Wilkins.
  33. Schlegel, H. G. & Jannasch, H. W. ( 1992; ). Prokaryotes and their habitats. In The Prokaryotes, vol. 1, pp. 75–125. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  34. Shida, O., Takagi, H., Kadowaki, K., Nakamura, L. K. & Komagata, K. ( 1997; ). Emended description of Paenibacillus amylolyticus and description of Paenibacillus illinoisensis sp. nov. and Paenibacillus chibensis sp. nov. Int J Syst Bacteriol 47, 299–306.[CrossRef]
    [Google Scholar]
  35. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–657. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  36. Spurr, A. R. ( 1969; ). A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26, 31–43.[CrossRef]
    [Google Scholar]
  37. Stouthamer, A. H. ( 1988; ). Dissimilatory reduction of oxidized nitrogen compounds. In Biology of Anaerobic Microorganisms, pp. 245–301. Edited by E. J. B. Zehnder. New York: Wiley.
  38. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reverse-phased high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  39. Traub, W. H., Acker, G. & Kleber, I. ( 1976; ). Ultrastructural surface alterations of Serratia marcescens after exposure to polymyxin B and/or fresh human serum. Chemotherapy 22, 104–113.[CrossRef]
    [Google Scholar]
  40. Valentine, R. C., Shapiro, B. M. & Stadtman, E. R. ( 1968; ). Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme from Escherichia coli. Biochemistry 7, 2143–2152.[CrossRef]
    [Google Scholar]
  41. Van der Meulen, H. J., Harder, W. & Veldkamp, H. ( 1974; ). Isolation and characterization of Cytophaga flevensis sp. nov., a new agarolytic flexibacterium. Antonie van Leeuwenhoek 40, 329–346.[CrossRef]
    [Google Scholar]
  42. Yoon, J.-H., Oh, H.-M., Yoon, B.-D., Kang, K. H. & Park, Y.-H. ( 2003; ). Paenibacillus kribbensis sp. nov. and Paenibacillus terrae sp. nov., bioflocculants for efficient harvesting of algal cells. Int J Syst Evol Microbiol 53, 295–301.[CrossRef]
    [Google Scholar]
  43. Zumft, W. G. ( 1992; ). The denitrifying prokaryotes. In The Prokaryotes, 2nd edn, pp. 554–582. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63484-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63484-0
Loading

Data & Media loading...

vol. , part 3, pp. 1255–1265

A table of the substrate utilization profiles of earthworm-gut isolates and transmission electron micrographs of strains ED5 and MH72 are available to download. [PDF](159KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error