1887

Abstract

Phylogenetic and phenotypic analysis of cultivable marine bacteria isolated from laboratory cultures of two paralytic shellfish toxin-producing dinoflagellates, and , showed the presence of a novel group of Gram-negative, aerobic, moderately halophilic and hydrocarbon-degrading bacteria, related to the genus . The strains, designated DG893, DG1136 and ATAM407-13, grew optimally in media with 3–6 % NaCl and at 25–30 °C, and all could utilize n-hexadecane and n-tetradecane as the sole carbon source. The strains had a 16S rRNA gene sequence similarity of 94·2–94·3 % to ATCC 27132, and a similarity of 97·5–97·8 % to the closest phylogenetically related type strain, DSM 16070. DNA–DNA hybridization levels to and other type strains were ⩽42 %, while DNA–DNA reassociation values among DG893, DG1136 and ATAM407-13 were ⩾83 %. The DNA G+C content was 54–55 mol% and the major isoprenoid quinone was ubiquinone-9. On the basis of phenotypic, chemotaxonomic, DNA–DNA hybridization and phylogenetic analysis, it is proposed that these three strains represent a novel species, sp. nov. The type strain is DG893 (=DSM 16394=NCIMB 14009).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63447-0
2006-03-01
2021-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/3/523.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63447-0&mimeType=html&fmt=ahah

References

  1. Beveridge T. J., Popkin T. J., Cole R. M. 1994; Electron microscopy. In Methods for General and Molecular Bacteriology pp  42–71 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  2. Bowman J. P., McCammon S. A., Brown J. L., McMeekin T. A. 1998; Glaciecola punicea gen. nov., sp. nov. and Glaciecola pallidula gen. nov. sp. nov.: psychrophilic bacteria from Antarctic sea-ice habitats. Int J Syst Bacteriol 48:1213–1222 [CrossRef]
    [Google Scholar]
  3. Cole J. R., Chai B., Marsh T. L. 8 other authors 2003; The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443 [CrossRef]
    [Google Scholar]
  4. Gallacher S., Flynn K. J., Franco J. M., Brueggemann E. E., Hines H. B. 1997; Evidence for production of paralytic shellfish toxins by bacteria associated with Alexandrium spp. (Dinophyta) in culture. Appl Environ Microbiol 63:239–245
    [Google Scholar]
  5. Gauthier M. J., Lafay B., Christen R., Fernandez L., Acquaviva M., Bonin P., Bertrand J.-C. 1992; Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576 [CrossRef]
    [Google Scholar]
  6. Gorshkova N. M., Ivanova E. P., Sergeev A. F., Zhukova N. V., Alexeeva Y., Wright J. P., Nicolau D. V., Mikhailov V. V., Christen R. 2003; Marinobacter excellens sp. nov., isolated from sediments of the Sea of Japan. Int J Syst Evol Microbiol 53:2073–2078 [CrossRef]
    [Google Scholar]
  7. Green D. H., Llewellyn L. E., Negri A. P., Blackburn S. I., Bolch C. J. S. 2004; Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum . FEMS Microbiol Ecol 47:345–357 [CrossRef]
    [Google Scholar]
  8. Hold G. L., Smith E. A., Rappe M. S. 7 other authors 2001; Characterisation of bacterial communities associated with toxic and non-toxic dinofagellates: Alexandrium spp. and Scrippsiella trochoidea . FEMS Microbiol Ecol 37:161–173 [CrossRef]
    [Google Scholar]
  9. Huu N. B., Denner E. B. M., Dang T. C. H., Wanner G., Stan-Lotter H. 1999; Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49:367–375 [CrossRef]
    [Google Scholar]
  10. Kodama M., Ogata T., Sakamoto S., Sato S., Honda T., Miwatani T. 1990; Production of paralytic shellfish toxins by a bacterium Moraxella sp. isolated from Protogonyaulax tamarensis . Toxicon 28:707–714 [CrossRef]
    [Google Scholar]
  11. Komagata K., Suzuki K. 1987; Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–203
    [Google Scholar]
  12. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  13. Martín S., Márquez M. C., Sánchez-Porro C., Mellado E., Arahal D. R., Ventosa A. 2003; Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity. Int J Syst Evol Microbiol 53:1383–1387 [CrossRef]
    [Google Scholar]
  14. Romanenko L. A., Schumann P., Rohde M., Zhukova N. V., Mikhailov V. V., Stackebrandt E. 2005; Marinobacter bryozoorum sp. nov. and Marinobacter sediminum sp. nov., novel bacteria from the marine environment. Int J Syst Evol Microbiol 55:143–148 [CrossRef]
    [Google Scholar]
  15. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  16. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids Newark, DE: MIDI Inc;
    [Google Scholar]
  17. Shieh W. Y., Jean W. D., Lin Y. T., Tseng M. 2003; Marinobacter lutaoensis sp. nov., a thermotolerant marine bacterium isolated from a coastal hot spring in Lutao, Taiwan. Can J Microbiol 49:244–252 [CrossRef]
    [Google Scholar]
  18. Shivaji S., Gupta P., Chaturvedi P., Suresh K., Delille D. 2005; Marinobacter maritimus sp. nov., a psychrotolerant strain isolated from sea water off the subantarctic Kerguelen islands. Int J Syst Evol Microbiol 55:1453–1456 [CrossRef]
    [Google Scholar]
  19. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp  607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  20. Smith E. A., Mackintosh F. H., Grant F., Gallacher S. 2002; Sodium channel blocking (SCB) activity and transformation of paralytic shellfish toxins (PST) by dinoflagellate-associated bacteria. Aquat Microb Ecol 29:1–9 [CrossRef]
    [Google Scholar]
  21. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  22. Swofford D. L. 2001 paup Phylogenetic Analysis Using Parsimony and other Methods , 4th edn. Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  23. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  24. Yakimov M. M., Golyshin P. N., Lang S., Moore E. R. B., Abraham W.-R., Lünsdorf H., Timmis K. N. 1998; Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348 [CrossRef]
    [Google Scholar]
  25. Yoon J. H., Yeo S. H., Kim I. G., Oh T. K. 2004; Marinobacter flavimaris sp. nov. and Marinobacter daepoensis sp. nov., slightly halophilic organisms isolated from sea water of the Yellow Sea in Korea. Int J Syst Evol Microbiol 54:1799–1803 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63447-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63447-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error