1887

Abstract

A halophilic -proteobacterium, designated CL-SP19, was isolated from hypersaline water from a solar saltern located in Seosin, Korea. Analysis of the 16S rRNA gene sequence revealed an affiliation with the genus . The sequence similarities between CL-SP19 and type strains of the genus ranged from 95·9 to 96·9 %. Cells were straight or slightly curved rods and were motile by means of a single polar flagellum. The major fatty acids were C iso (17·1 %) and C iso (15·2 %). Three fatty acids, C 8 cyclo (3·5 %), C 5 (1·4 %) and C 6 (1·2 %), were found in minor quantities, but uniquely in CL-SP19 among species. The DNA G+C content was 45·0 mol%. On the basis of its physiology, fatty acid composition and 16S rRNA gene sequence, strain CL-SP19 could be assigned to the genus but distinguished from the recognized species of the genus. Strain CL-SP19, therefore, represents a novel species, for which the name sp. nov. is proposed, with CL-SP19 (=KCTC 12296=JCM 12526) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63365-0
2005-01-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/1/ijs550379.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63365-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Brettar, I., Christen, R. & Höfle, M. G. ( 2003; ). Idiomarina baltica sp. nov., a marine bacterium with a high optimum growth temperature isolated from surface water of the central Baltic Sea. Int J Syst Evol Microbiol 53, 407–413.[CrossRef]
    [Google Scholar]
  3. Cole, J. R., Chai, B., Marsh, T. L. & 8 other authors ( 2003; ). The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31, 442–443.[CrossRef]
    [Google Scholar]
  4. Donachie, S. P., Hou, S., Gregory, T. S., Malahoff, A. & Alam, M. ( 2003; ). Idiomarina loihiensis sp. nov., a halophilic γ-Proteobacterium from the Lō'ihi submarine volcano, Hawai'i. Int J Syst Evol Microbiol 53, 1873–1879.[CrossRef]
    [Google Scholar]
  5. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  6. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  7. Hansen, G. H. & Sørheim, R. ( 1991; ). Improved method for phenotypical characterization of marine bacteria. J Microbiol Methods 13, 231–241.[CrossRef]
    [Google Scholar]
  8. Ivanova, E. P., Romanenko, L. A., Chun, J. & 7 other authors ( 2000; ). Idiomarina gen. nov., comprising novel indigenous deep-sea bacteria from the Pacific Ocean, including descriptions of two species, Idiomarina abyssalis sp. nov. and Idiomarina zobellii sp. nov. Int J Syst Evol Microbiol 50, 901–907.[CrossRef]
    [Google Scholar]
  9. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  10. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  11. Martínez-Cánovas, M. J., Béjar, V., Martínez-Checa, F., Páez, R. & Quesada, E. ( 2004; ). Idiomarina fontislapidosi sp. nov. and Idiomarina ramblicola sp. nov., isolated from inland hypersaline habitats in Spain. Int J Syst Evol Microbiol 54, 1793–1797.[CrossRef]
    [Google Scholar]
  12. Posada, D. & Crandall, K. A. ( 1998; ). modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.[CrossRef]
    [Google Scholar]
  13. Rosselló-Mora, R. & Amann, R. ( 2001; ). The species concept for prokaryotes. FEMS Microbiol Rev 25, 39–67.[CrossRef]
    [Google Scholar]
  14. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  15. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  16. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  17. Swofford, D. L. ( 1998; ). paup* – Phylogenetic analysis using parsimony, version 4. Sunderland, MA: Sinauer Associates.
  18. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reverse-phase high performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  19. Yi, H. & Chun, J. ( 2004; ). Nocardioides ganghwensis sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 54, 1295–1299.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63365-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63365-0
Loading

Data & Media loading...

vol. , part 1, pp. 379–383

Additional phenotypic data are available to download. [PDF](112KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error