1887

Abstract

A halophilic -proteobacterium, designated CL-SP19, was isolated from hypersaline water from a solar saltern located in Seosin, Korea. Analysis of the 16S rRNA gene sequence revealed an affiliation with the genus . The sequence similarities between CL-SP19 and type strains of the genus ranged from 95·9 to 96·9 %. Cells were straight or slightly curved rods and were motile by means of a single polar flagellum. The major fatty acids were C iso (17·1 %) and C iso (15·2 %). Three fatty acids, C 8 cyclo (3·5 %), C 5 (1·4 %) and C 6 (1·2 %), were found in minor quantities, but uniquely in CL-SP19 among species. The DNA G+C content was 45·0 mol%. On the basis of its physiology, fatty acid composition and 16S rRNA gene sequence, strain CL-SP19 could be assigned to the genus but distinguished from the recognized species of the genus. Strain CL-SP19, therefore, represents a novel species, for which the name sp. nov. is proposed, with CL-SP19 (=KCTC 12296=JCM 12526) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63365-0
2005-01-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/1/ijs550379.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63365-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Brettar I., Christen R., Höfle M. G. 2003; Idiomarina baltica sp. nov., a marine bacterium with a high optimum growth temperature isolated from surface water of the central Baltic Sea. Int J Syst Evol Microbiol 53:407–413 [CrossRef]
    [Google Scholar]
  3. Cole J. R., Chai B., Marsh T. L. 8 other authors 2003; The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443 [CrossRef]
    [Google Scholar]
  4. Donachie S. P., Hou S., Gregory T. S., Malahoff A., Alam M. 2003; Idiomarina loihiensis sp. nov., a halophilic γ - Proteobacterium from the Lō'ihi submarine volcano. Hawai'i. Int J Syst Evol Microbiol 53:1873–1879 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  6. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  7. Hansen G. H., Sørheim R. 1991; Improved method for phenotypical characterization of marine bacteria. J Microbiol Methods 13:231–241 [CrossRef]
    [Google Scholar]
  8. Ivanova E. P., Romanenko L. A., Chun J. 7 other authors 2000; Idiomarina gen. nov., comprising novel indigenous deep-sea bacteria from the Pacific Ocean, including descriptions of two species, Idiomarina abyssalis sp.nov. and Idiomarina zobellii sp. nov.. Int J Syst Evol Microbiol 50:901–907 [CrossRef]
    [Google Scholar]
  9. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  10. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  11. Martínez-Cánovas M. J., Béjar V., Martínez-Checa F., Páez R., Quesada E. 2004; Idiomarina fontislapidosi sp. nov. and Idiomarina ramblicola sp. nov., isolated from inland hypersaline habitats in Spain. Int J Syst Evol Microbiol 54:1793–1797 [CrossRef]
    [Google Scholar]
  12. Posada D., Crandall K. A. 1998; modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818 [CrossRef]
    [Google Scholar]
  13. Rosselló-Mora R., Amann R. 2001; The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67 [CrossRef]
    [Google Scholar]
  14. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  15. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp  607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  16. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  17. Swofford D. L. 1998 paup* – Phylogenetic analysis using parsimony, version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  18. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  19. Yi H., Chun J. 2004; Nocardioides ganghwensis sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 54:1295–1299 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63365-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63365-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error