1887

Abstract

A Gram-negative, motile, rod-shaped bacterium, designated strain P1, was isolated from activated sludge of a municipal wastewater treatment plant. Phylogenetic analysis of its 16S rRNA gene sequence placed the novel isolate among representatives of the family . The closest relatives in reconstructed phylogenetic trees were , and species. Strain P1 was not able to grow anaerobically or autotrophically, reduced nitrate to nitrite and required vitamins for growth. Ubiquinone 8 (Q8) and 3-hydroxy-substituted fatty acids were present, but 2-hydroxy fatty acids were absent. The G+C content of the DNA was 67 mol%. Phenotypic characteristics allowed a clear differentiation of strain P1 from representatives of the genera and , whereas DNA–DNA hybridization experiments revealed that strain P1 did not belong to the species . As a peculiarity, cells of strain P1 and ATCC 14606 were able to accumulate large amounts of polyhydroxyalkanoates and polyphosphate in the form of large intracellular granules. Apparently in both strains nitrogen limitation stimulates the production of polyhydroxyalkanoates, whereas carbon starvation induces the formation of polyphosphates. Based upon phylogenetic and phenotypic evidence, it is proposed to establish the novel taxon gen. nov., sp. nov., represented by the type strain P1 (=DSM 15619=JCM 12706=CIP 108194). The most closely related species of strain P1 was . This species has been misclassified, and it is proposed to transfer it to the new genus as gen. nov., comb. nov. The type strain is ATCC 14606 (=DSM 15801).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63356-0
2005-03-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/2/ijs550621.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63356-0&mimeType=html&fmt=ahah

References

  1. Blackall, L. L., Crocetti, G. R., Saunders, A. M. & Bond, P. L. ( 2002; ). A review and update of the microbiology of enhanced biological phosphorus removal in wastewater treatment plants. Antonie van Leeuwenhoek 81, 681–691.[CrossRef]
    [Google Scholar]
  2. Bryant, M. P. ( 1972; ). Commentary on the Hungate technique for the culture of anaerobic bacteria. Am J Clin Nutr 25, 1324–1328.
    [Google Scholar]
  3. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M. ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef]
    [Google Scholar]
  4. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  5. Dubinina, G. A. & Grabovich, M. Y. ( 1984; ). Isolation, cultivation, and characteristics of Macromonas bipunctata. Microbiology (English translation of Mikrobiologiya) 53, 610–617.
    [Google Scholar]
  6. Felsenstein, J. ( 1982; ). Numerical methods for inferring phylogenetic trees. Q Rev Biol 57, 379–404.[CrossRef]
    [Google Scholar]
  7. Ginige, M. P., Hugenholtz, P., Daims, H., Wagner, M., Keller, J. & Blackall, L. L. ( 2004; ). Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization–microautoradiography to study a methanol-fed denitrifying microbial community. Appl Environ Microbiol 70, 588–596.[CrossRef]
    [Google Scholar]
  8. Hesselmann, R. P., Werlen, C., Hahn, D., van der Meer, J. R. & Zehnder, A. J. ( 1999; ). Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Syst Appl Microbiol 22, 454–465.[CrossRef]
    [Google Scholar]
  9. Hungate, R. E. ( 1950; ). The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev 14, 1–49.
    [Google Scholar]
  10. Jenkins, D., Richards, M. G. & Daigger, G. T. ( 1993; ). Manual on the Causes and Control of Activated Sludge Bulking and Foaming, 2nd edn. London: Lewis.
  11. Juretschko, S., Loy, A., Lehner, A. & Wagner, M. ( 2002; ). The microbial community composition of a nitrifying–denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst Appl Microbiol 25, 84–99.[CrossRef]
    [Google Scholar]
  12. Kämpfer, P. & Kroppenstedt, R. M. ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42, 989–1005.[CrossRef]
    [Google Scholar]
  13. Kämpfer, P., Steiof, M. & Dott, W. ( 1991; ). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21, 227–251.[CrossRef]
    [Google Scholar]
  14. Kämpfer, P., Denner, E. B. M., Meyer, S., Moore, E. R. B. & Busse, H.-J. ( 1997; ). Classification of “Pseudomonas azotocolligans” Anderson 1955, 132, in the genus Sphingomonas as Sphingomonas trueperi sp. nov. Int J Syst Bacteriol 47, 577–583.[CrossRef]
    [Google Scholar]
  15. Kämpfer, P., Schulze, R., Jäckel, U., Malik, K. A., Amann, R. & Spring, S. ( 2005; ). Hydrogenophaga defluvii sp. nov. and Hydrogenophaga atypica sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 55, 341–344.[CrossRef]
    [Google Scholar]
  16. Lee, N., Nielsen, P. H., Andreasen, K. H., Juretschko, S., Nielsen, J. L., Schleifer, K.-H. & Wagner, M. ( 1999; ). Combination of fluorescent in situ hybridization and microautoradiography – a new tool for structure-function analyses in microbial ecology. Appl Environ Microbiol 65, 1289–1297.
    [Google Scholar]
  17. Lee, N., Nielsen, P. H., Aspegren, H., Henze, M., Schleifer, K.-H. & la Cour Jansen, J. ( 2003; ). Long-term population dynamics and in situ physiology in activated sludge systems with enhanced biological phosphorus removal operated with and without nitrogen removal. Syst Appl Microbiol 26, 211–227.[CrossRef]
    [Google Scholar]
  18. Leifson, E. ( 1962; ). Pseudomonas spinosa n. sp. Int Bull Bacteriol Nomencl Taxon 12, 89–92.
    [Google Scholar]
  19. Ludwig, W., Strunk, O., Westram, R. & 29 other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  20. Malik, K. A. & Schlegel, H. G. ( 1981; ). Chemolithoautotrophic growth of bacteria able to grow under N2-fixing conditions. FEMS Microbiol Lett 11, 63–67.[CrossRef]
    [Google Scholar]
  21. Manz, W., Wagner, M., Amann, R. & Schleifer, K.-H. ( 1994; ). In situ characterization of the microbial consortia active in two wastewater treatment plants. Water Res 28, 1715–1723.[CrossRef]
    [Google Scholar]
  22. Monciardini, P., Cavaletti, L., Schumann, P., Rohde, M. & Donadio, S. ( 2003; ). Conexibacter woesei gen. nov., sp. nov., a novel representative of a deep evolutionary line of descent within the class Actinobacteria. Int J Syst Evol Microbiol 53, 569–576.[CrossRef]
    [Google Scholar]
  23. Ostle, A. G. & Holt, J. G. ( 1982; ). Nile Blue A as a fluorescent stain for poly-β-hydroxybutyrate. Appl Environ Microbiol 44, 238–241.
    [Google Scholar]
  24. Ouverney, C. C. & Fuhrman, J. A. ( 1999; ). Combined microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl Environ Microbiol 65, 1746–1752.
    [Google Scholar]
  25. Purkhold, U., Pommerening-Röser, A., Juretschko, S., Schmid, M. C., Koops, H. P. & Wagner, M. ( 2000; ). Phylogeny of all recognized species of ammonia-oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66, 5368–5382.[CrossRef]
    [Google Scholar]
  26. Reasoner, D. J. & Geldreich, E. E. ( 1985; ). A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49, 1–7.
    [Google Scholar]
  27. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  28. Schulze, R., Spring, S., Amann, R., Huber, I., Ludwig, W., Schleifer, K.-H. & Kämpfer, P. ( 1999; ). Genotypic diversity of Acidovorax strains isolated from activated sludge and description of Acidovorax defluvii sp. nov. Syst Appl Microbiol 22, 205–214.[CrossRef]
    [Google Scholar]
  29. Serafim, L. S., Lemos, P. C., Levantesi, C., Tandoi, V., Santos, H. & Reis, M. A. M. ( 2002; ). Methods for detection and visualization of intracellular polymers stored by polyphosphate-accumulating microorganisms. J Microbiol Methods 51, 1–18.[CrossRef]
    [Google Scholar]
  30. Seviour, R. J., Mino, T. & Onuki, M. ( 2003; ). The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol Rev 27, 99–127.[CrossRef]
    [Google Scholar]
  31. Snaidr, J., Amann, R., Huber, I., Ludwig, W. & Schleifer, K.-H. ( 1997; ). Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63, 2884–2896.
    [Google Scholar]
  32. Spring, S., Kämpfer, P. & Schleifer, K. H. ( 2001; ). Limnobacter thiooxidans gen. nov., sp. nov., a novel thiosulfate-oxidizing bacterium isolated from freshwater lake sediment. Int J Syst Evol Microbiol 51, 1463–1470.
    [Google Scholar]
  33. Spring, S., Jäckel, U., Wagner, M. & Kämpfer, P. ( 2004; ). Ottowia thiooxydans gen. nov., sp. nov., a novel facultatively anaerobic, N2O-producing bacterium isolated from activated sludge, and transfer of Aquaspirillum gracile to Hylemonella gracilis gen. nov., comb. nov. Int J Syst Evol Microbiol 54, 99–106.[CrossRef]
    [Google Scholar]
  34. Stante, L., Cellamare, C. M., Malaspina, F., Bortone, G. & Tolche, A. ( 1997; ). Biological phosphorus removal by pure culture of Lampropedia spp. Water Res 31, 1317–1324.[CrossRef]
    [Google Scholar]
  35. Tschech, A. & Pfennig, N. ( 1984; ). Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol 137, 163–167.[CrossRef]
    [Google Scholar]
  36. Vishniac, W. & Santer, M. ( 1957; ). The Thiobacilli. Bacteriol Rev 21, 195–213.
    [Google Scholar]
  37. Wagner, M. & Amann, R. ( 1997; ). Molecular techniques for determining microbial community structures in activated sludge. In Microbial Community Analysis: the Key to the Design of Bacterial Wastewater Treatment Systems, pp. 61–72. IAWQ Scientific Technical Report no. 5. Edited by T. E. Cloete & N. Y. O. Muyima. Cambridge: Cambridge University Press.
  38. Wagner, M. & Loy, A. ( 2002; ). Bacterial community composition and function in sewage treatment systems. Curr Opin Biotechnol 13, 218–227.[CrossRef]
    [Google Scholar]
  39. Wagner, M., Amann, R., Lemmer, H. & Schleifer, K.-H. ( 1993; ). Probing activated sludge with oligonucleotides specific for Proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl Environ Microbiol 59, 1520–1525.
    [Google Scholar]
  40. Wagner, M., Amann, R., Kämpfer, P., Assmus, B., Hartmann, A., Hutzler, P., Springer, N. & Schleifer, K.-H. ( 1994a; ). Identification and in situ detection of gram-negative filamentous bacteria in activated sludge. Syst Appl Microbiol 17, 405–417.[CrossRef]
    [Google Scholar]
  41. Wagner, M., Erhart, R., Manz, W., Amann, R., Lemmer, H., Wedi, D. & Schleifer, K. H. ( 1994b; ). Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl Environ Microbiol 60, 792–800.
    [Google Scholar]
  42. Wallner, G., Erhart, R. & Amann, R. ( 1995; ). Flow cytometric analysis of activated sludge with rRNA-targeted probes. Appl Environ Microbiol 61, 1859–1866.
    [Google Scholar]
  43. Wolin, E. A., Wolin, M. J. & Wolfe, R. S. ( 1963; ). Formation of methane by bacterial extracts. J Biol Chem 238, 2882–2886.
    [Google Scholar]
  44. Yokota, A., Akagawa-Matsushita, M., Hiraishi, A., Katayama, Y., Urakami, T. & Yamasato, K. ( 1992; ). Distribution of quinone systems in microorganisms: Gram-negative eubacteria. Bull Jpn Fed Cult Coll 8, 136–171.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63356-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63356-0
Loading

Data & Media loading...

Supplements

vol. , part 2, pp. 621–629

Additional micrographs and an unrooted phylogenetic tree are available to download. [PDF](113KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error