1887

Abstract

A novel mesophilic, hydrogen-oxidizing, sulfur-reducing bacterium, designated strain BKB25Ts-Y, was isolated from hydrothermal sediments at Iheya North in the Mid-Okinawa Trough, Japan. Cells were Gram-negative, motile rods (1·8–2·1 μm long and 0·5–0·7 μm wide). The isolate was a strictly anaerobic chemolithoautotroph capable of using molecular hydrogen as the sole energy source and carbon dioxide as the sole carbon source. Elemental sulfur and nitrate served as electron acceptors, respectively yielding hydrogen sulfide and ammonium. Growth was observed at 20–42 °C (optimum 32 °C; 3 h doubling time), pH 5·0–6·5 (optimum 6·0) and in the presence of 2·0–4·0 % NaCl (optimum 2·5 %) via respiratory S reduction with H. The G+C content of the genomic DNA was 37·2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate represented the first strain for which taxonomic properties have been characterized within the previously uncultivated - Group G. On the basis of the physiological and molecular properties of the novel isolate, the genus name gen. nov. is proposed, with sp. nov. as the type species. The type strain is BKB25Ts-Y (=JCM 12457=DSM 16661).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63351-0
2005-03-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/2/ijs550599.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63351-0&mimeType=html&fmt=ahah

References

  1. Alain, K., Quérellou, J., Lesongeur, F., Pignet, P., Crassous, P., Raguénès, G., Cueff, V. & Cambon-Bonavita, M.-A. ( 2002; ). Caminibacter hydrogeniphilus gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52, 1317–1323.[CrossRef]
    [Google Scholar]
  2. Alain, K., Zbinden, M., Le Bris, N., Lesongeur, F., Quérellou, J., Gaill, F. & Cambon-Bonavita, M.-A. ( 2004; ). Early steps in microbial colonization processes at deep-sea hydrothermal vents. Environ Microbiol 6, 227–241.[CrossRef]
    [Google Scholar]
  3. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  4. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S. ( 1979; ). Methanogens: reevaluation of a unique biological group. Microbiol Rev 43, 260–296.
    [Google Scholar]
  5. Baross, J. A. ( 1995; ). Isolation, growth and maintenance of hyperthermophiles. In Archaea: a Laboratory Manual, Thermophiles, pp. 15–23. Edited by F. T. Robb & A. R. Place. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  6. Benson, D. A., Boguski, M. S., Lipman, D. J., Ostell, J. & Ouellette, B. F. F. ( 1998; ). Genbank. Nucleic Acids Res 26, 1–7.[CrossRef]
    [Google Scholar]
  7. Corre, E., Reysenbach, A.-L. & Prieur, D. ( 2001; ). Epsilon-proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. FEMS Microbiol Lett 205, 329–335.
    [Google Scholar]
  8. DeLong, E. F. ( 1992; ). Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89, 5685–5689.[CrossRef]
    [Google Scholar]
  9. Haddad, A., Camacho, F., Durand, P. & Cary, S. C. ( 1995; ). Phylogenetic characterization of the epibiotic bacteria associated with the hydrothermal vent polychaete Alvinella pompejana. Appl Environ Microbiol 61, 1679–1687.
    [Google Scholar]
  10. Huber, H., Burggraf, S., Mayer, T., Wyschkony, I., Rachel, R. & Stetter, K. O. ( 2000; ). Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic Archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus sp. nov. Int J Syst Evol Microbiol 50, 2093–2100.[CrossRef]
    [Google Scholar]
  11. Huber, J. A., Butterfield, D. A. & Baross, J. A. ( 2003; ). Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. FEMS Microbiol Ecol 43, 393–409.[CrossRef]
    [Google Scholar]
  12. Inagaki, F., Takai, K., Kobayashi, H., Nealson, K. H. & Horikoshi, K. ( 2003; ). Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing ε-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 53, 1801–1805.[CrossRef]
    [Google Scholar]
  13. Inagaki, F., Takai, K., Nealson, K. H. & Horikoshi, K. ( 2004; ). Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the ε-Proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int J Syst Evol Microbiol 54, 1477–1482.[CrossRef]
    [Google Scholar]
  14. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  15. Lauerer, G., Kristjánsson, J. K., Langworthy, T. A., König, H. & Stetter, K. O. ( 1986; ). Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97 °C. Syst Appl Microbiol 8, 100–105.[CrossRef]
    [Google Scholar]
  16. Longnecker, K. & Reysenbach, A.-L. ( 2001; ). Expansion of the geographic distribution of a novel lineage of epsilon-Proteobacteria to a hydrothermal vent site on the Southern East Pacific Rise. FEMS Microbiol Ecol 35, 287–293.
    [Google Scholar]
  17. López-García, P., Duperron, S., Philippot, P., Foriel, J., Susini, J. & Moreira, D. ( 2003; ). Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ Microbiol 5, 961–976.[CrossRef]
    [Google Scholar]
  18. Miroshnichenko, M. L., Kostrikina, N. A., L'Haridon, S., Jeanthon, C., Hippe, H., Stackebrandt, E. & Bonch-Osmolovskaya, E. A. ( 2002; ). Nautilia lithotrophica gen. nov., sp. nov., a thermophilic sulfur-reducing ε-proteobacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52, 1299–1304.[CrossRef]
    [Google Scholar]
  19. Miroshnichenko, M. L., L'Haridon, S., Schumann, P., Spring, S., Bonch-Osmolovskaya, E. A., Jeanthon, C. & Stackebrandt, E. ( 2004; ). Caminibacter profundus sp. nov., a novel thermophile of Nautiliales ord. nov. within the class ‘Epsilonproteobacteria’, isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 54, 41–45.[CrossRef]
    [Google Scholar]
  20. Nakagawa, S., Takai, K., Horikoshi, K. & Sako, Y. ( 2003; ). Persephonella hydrogeniphila sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53, 863–869.[CrossRef]
    [Google Scholar]
  21. Pihl, T. D., Black, L. K., Schulman, B. A. & Maier, R. J. ( 1992; ). Hydrogen-oxidizing electron transport components in the hyperthermophilic archaebacterium Pyrodictium brockii. J Bacteriol 174, 137–143.
    [Google Scholar]
  22. Polz, M. F. & Cavanaugh, C. M. ( 1995; ). Dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. Proc Natl Acad Sci U S A 92, 7232–7236.[CrossRef]
    [Google Scholar]
  23. Porter, K. G. & Feig, Y. S. ( 1980; ). The use of DAPI for identifying and counting microflora. Limnol Oceanogr 25, 943–948.[CrossRef]
    [Google Scholar]
  24. Reysenbach, A.-L., Longnecker, K. & Kirshtein, J. ( 2000; ). Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 66, 3798–3806.[CrossRef]
    [Google Scholar]
  25. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  26. Sako, Y., Takai, K., Ishida, Y., Uchida, A. & Katayama, Y. ( 1996; ). Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. Int J Syst Bacteriol 46, 1099–1104.[CrossRef]
    [Google Scholar]
  27. Stetter, K. O., König, H. & Stackebrandt, E. ( 1983; ). Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur reducing archaebacteria growing optimally at 105 °C. Syst Appl Microbiol 4, 535–551.[CrossRef]
    [Google Scholar]
  28. Swofford, D. L. ( 2000; ). paup*. Phylogenetic Analysis Using Parsimony (* and other methods), version 4. Sunderland, MA: Sinauer Associates.
  29. Takai, K., Inagaki, F., Nakagawa, S., Hirayama, H., Nunoura, T., Sako, Y., Nealson, K. H. & Horikoshi, K. ( 2003a; ). Isolation and phylogenetic diversity of members of previously uncultivated epsilon-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218, 167–174.
    [Google Scholar]
  30. Takai, K., Nakagawa, S., Sako, Y. & Horikoshi, K. ( 2003b; ). Balnearium lithotrophicum gen. nov., sp. nov., a novel thermophilic, strictly anaerobic, hydrogen-oxidizing chemolithoautotroph isolated from a black smoker chimney in the Suiyo Seamount hydrothermal system. Int J Syst Evol Microbiol 53, 1947–1954.[CrossRef]
    [Google Scholar]
  31. Takai, K., Nealson, K. H. & Horikoshi, K. ( 2004; ). Hydrogenimonas thermophila gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing chemolithoautotroph within the ε-Proteobacteria, isolated from a black smoker in a Central Indian Ridge hydrothermal field. Int J Syst Evol Microbiol 54, 25–32.[CrossRef]
    [Google Scholar]
  32. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  33. Wirsen, C. O., Jannasch, H. W. & Molyneaux, S. J. ( 1993; ). Chemosynthetic microbial activity at Mid-Atlantic Ridge hydrothermal vent sites. J Geophys Res 98, 9693–9703.[CrossRef]
    [Google Scholar]
  34. Zillig, W., Holz, I., Janekovic, D. & 7 other authors ( 1990; ). Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 172, 3959–3965.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63351-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63351-0
Loading

Data & Media loading...

Supplements

vol. , part 2, pp. 599–605

A figure showing the effects of temperature, pH and NaCl concentration on growth of strain BKB25Ts-Y is available to download. [PDF](87KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error