1887

Abstract

Three novel heterotrophic, Gram-negative, yellow-pigmented, aerobic, gliding, oxidase- and catalase-positive bacteria were isolated from algae collected in the Gulf of Peter the Great, Sea of Japan. 16S rRNA gene sequence analysis revealed that the strains studied represented members of the family and showed 93·5–93·8 % similarity with their closest relative, . The DNA G+C content of the strains was 34–37 mol%. The major respiratory quinone was MK-6. The predominant fatty acids were iso-C, anteiso-C, iso-C, iso-C-3OH and iso-C-3OH. On the basis of their phenotypic, chemotaxonomic, genotypic and phylogenetic characteristics, the newly described bacteria have been assigned to the new genus gen. nov., as sp. nov. (type strain, KMM 3907=KCTC 12221=LMG 22492=DSM 15363), sp. nov. (type strain, KMM 3906=KCTC 12220=LMG 22491=CCUG 47091) and sp. nov. (type strain, KMM 3944 (=KCTC 12219=LMG 22474).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63307-0
2005-01-01
2019-09-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/1/ijs550049.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63307-0&mimeType=html&fmt=ahah

References

  1. Akagawa-Matsushita, M., Itoh, T., Katayama, Y., Kuraishi, H. & Yamasato, K. ( 1992; ). Isoprenoid quinone composition of some marine Alteromonas, Marinomonas, Deleya, Pseudomonas and Shewanella species. J Gen Microbiol 138, 2275–2281.[CrossRef]
    [Google Scholar]
  2. Barbeyron, T., L'Haridon, S., Corre, E., Kloareg, B. & Potin, P. ( 2001; ). Zobellia galactanovorans gen. nov., sp. nov., a marine species of Flavobacteriaceae isolated from red alga, and classification of [Cytophaga] uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Zobellia uliginosa gen. nov., comb. nov. Int J Syst Evol Microbiol 51, 985–997.[CrossRef]
    [Google Scholar]
  3. Bolinches, J., Lemos, M. L. & Barja, J. L. ( 1988; ). Population dynamics of heterotrophic bacterial communities associated with Fucus vesiculosis and Ulva rigida in an estuary. Microb Ecol 15, 345–357.[CrossRef]
    [Google Scholar]
  4. Bowman, J. P. ( 2000; ). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50, 1861–1868.
    [Google Scholar]
  5. Bowman, J. P., McCammon, S. A., Brown, J. L., Nichols, P. D. & McMeekin, T. A. ( 1997; ). Psychroserpens burtonensis gen. nov., sp. nov., and Gelidibacter algens gen. nov., sp. nov., psychrophilic bacteria isolated from Antarctic lacustrine and sea ice habitats. Int J Syst Bacteriol 47, 670–677.[CrossRef]
    [Google Scholar]
  6. Chan, E. C. S. & McManus, E. A. ( 1969; ). Distribution, characterization, and nutrition of marine microorganisms from the algae Polysiphonia lanosa and Ascophyllum nodosum. Can J Microbiol 15, 409–420.[CrossRef]
    [Google Scholar]
  7. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  8. Felsenstein, J. ( 1993; ). phylip (phylogeny inference package), version 3.5. Department of Genetics, University of Washington, Seattle, USA.
  9. Fitch, W. M. & Margoliash, E. ( 1967; ). Construction of phylogenetic trees. Science 155, 279–284.[CrossRef]
    [Google Scholar]
  10. Hanzawa, N., Nakanishi, K., Nishijima, M. & Saga, N. ( 1998; ). 16S rDNA-based phylogenetic analysis of marine flavobacteria that induce algal morphogenesis. J Mar Biotechnol 6, 80–82.
    [Google Scholar]
  11. Ivanova, E. P., Nedashkovskaya, O. I., Chun, J. & 7 other authors ( 2001; ). Arenibacter gen. nov., a new genus of the family Flavobacteriaceae and description of a new species, Arenibacter latericius sp. nov. Int J Syst Evol Microbiol 51, 1987–1995.[CrossRef]
    [Google Scholar]
  12. Ivanova, E. P., Alexeeva, Y. A., Flavier, S., Wright, J. P., Zhukova, N. V., Gorshkova, N. M., Mikhailov, V. V., Nicolau, D. V. & Christen, R. ( 2004; ). Formosa algae gen. nov., sp. nov., a novel member of the family Flavobacteriaceae. Int J Syst Bacteriol 54, 705–711.[CrossRef]
    [Google Scholar]
  13. Johansen, J. E., Nielsen, P. & Sjøholm, C. ( 1999; ). Description of Cellulophaga baltica gen. nov., sp. nov. and Cellulophaga fucicola gen. nov., sp. nov. and reclassification of [Cytophaga] lytica to Cellulophaga lytica gen. nov., comb. nov. Int J Syst Bacteriol 49, 1231–1240.[CrossRef]
    [Google Scholar]
  14. Kim, S. B., Falconer, C., Williams, E. & Goodfellow, M. ( 1998; ). Streptomyces thermocarboxydovorans sp. nov. and Streptomyces thermocarboxydus sp. nov., two moderately thermophilic carboxydotrophic species from soil. Int J Syst Bacteriol 48, 59–68.[CrossRef]
    [Google Scholar]
  15. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  16. Macián, M. C., Pujalte, M. J., Márquez, M. C., Ludwig, W., Ventosa, A., Garay, E. & Schleifer, K. H. ( 2002; ). Gelidibacter mesophilus sp. nov., a novel marine bacterium in the family Flavobacteriaceae. Int J Syst Evol Microbiol 52, 1325–1329.[CrossRef]
    [Google Scholar]
  17. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  18. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  19. Nedashkovskaya, O. I., Suzuki, M., Vysotskii, M. V. & Mikhailov, V. V. ( 2003a; ). Reichenbachia agariperforans gen. nov., sp. nov., a novel marine bacterium in the phylum CytophagaFlavobacteriumBacteroides. Int J Syst Evol Microbiol 53, 81–85.[CrossRef]
    [Google Scholar]
  20. Nedashkovskaya, O. I., Kim, S. B., Han, S. K. & 7 other authors ( 2003b; ). Mesonia algae gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from the green alga Acrosiphonia sonderi (Kutz) Kornm. Int J Syst Bacteriol 53, 1967–1971.[CrossRef]
    [Google Scholar]
  21. Nedashkovskaya, O. I., Kim, S. B., Han, S. K., Rhee, M. S., Lysenko, A. M., Falsen, E., Frolova, G. M., Mikhailov, V. V. & Bae, K. S. ( 2004a; ). Ulvibacter litoralis gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from the green alga Ulva fenestrata. Int J Syst Bacteriol 54, 119–123.[CrossRef]
    [Google Scholar]
  22. Nedashkovskaya, O. I., Kim, S. B., Han, S. K. & 7 other authors ( 2004b; ). Maribacter gen. nov., a new member of the family Flavobacteriaceae, isolated from marine habitats, containing the species Maribacter sedimenticola sp. nov., Maribacter aquivivus sp. nov., Maribacter orientalis sp. nov. and Maribacter ulvicola sp. nov. Int J Syst Bacteriol 54, 1017–1023.[CrossRef]
    [Google Scholar]
  23. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  24. Suzuki, M., Nakagawa, Y., Harayama, S. & Yamamoto, S. ( 2001; ). Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov., and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 51, 1639–1652.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63307-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63307-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error