1887

Abstract

Two methanogenic strains, 8-2 and 4-1, with rod-shaped (0·4–0·5×3–5 μm), non-motile cells, sometimes observed in chains, were isolated from two anaerobic digesters in Beijing, China. The two strains used H/CO and formate for growth and produced methane. The temperature range for growth was 25–50 °C, with fastest growth at 37 °C. The pH ranges for growth and methane production were 6·5–8·0 for strain 8-2 and 6·8–8·6 for strain 4-1, with the fastest growth at pH 7·2 for strain 8-2 and pH 7·5–7·7 for strain 4-1. The G+C content of genomic DNA for strain 8-2 was 38·9 mol%. The similarity levels of the 16S rRNA sequence of strain 8-2 with other species of the genus ranged from 93·8 to 96·0 %. Based on the phylogenetic analysis and phenotypic characteristics, the novel species sp. nov. is proposed, with the type strain 8-2 (=DSM 15999=CGMCC 1.5011).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63254-0
2005-01-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/1/ijs550325.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63254-0&mimeType=html&fmt=ahah

References

  1. Belyaev S. S., Obraztcova A. Y., Laurinavichus K. S., Bezrukova L. V. 1986; Characteristics of rod-shaped methane-producing bacteria from oil pool and description of Methanobacterium ivanovii sp. nov. Microbiology (English translation of Mikrobiologiya ) 55821–826
    [Google Scholar]
  2. Boone D. R. 1987; Replacement of the type strain of Methanobacterium formicicum and reinstatement of Methanobacterium bryantii sp. nov. nom. rev. (ex Balch and Wolfe, 1981) with M.o.H. (DSM 863) as the type strain. Int J Syst Bacteriol 37:172–173 [CrossRef]
    [Google Scholar]
  3. Boone D. R., Whitman W. B. 1988; Proposal of minimal standards for describing new taxa of methanogenic bacteria. Int J Syst Bacteriol 38:212–219 [CrossRef]
    [Google Scholar]
  4. Bryant M. P., Boone D. R. 1987; Isolation and characterization of Methanobacterium formicicum MF. Int J Syst Bacteriol 37:171 [CrossRef]
    [Google Scholar]
  5. Cuzin N., Ouattara A. S., Labat M., Garcia J.-L. 2001; Methanobacterium congolense sp. nov., from a methanogenic fermentation of cassava peel. Int J Syst Evol Microbiol 51:489–493
    [Google Scholar]
  6. Furlong M. A., Singleton D. R., Coleman D. C., Whitman W. B. 2002; Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus . Appl Environ Microbiol 68:1265–1279 [CrossRef]
    [Google Scholar]
  7. Garcia J. L. 1990; Taxonomy and ecology of methanogens. FEMS Microbiol Rev 87:297–308 [CrossRef]
    [Google Scholar]
  8. Hobson P. N., Shaw B. G. 1973; The bacterial population of piggery-waste anaerobic digesters. Water Res 8:507–516
    [Google Scholar]
  9. Hungate R. E. 1969; A roll tube method for the cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  10. Jarrell K. F., Faguy D., Hebert A. M., Kalmokoff M. L. 1992; A general method of isolating high molecular weight DNA from methanogenic archaea (archaebacteria. Can J Microbiol 38:65–68 [CrossRef]
    [Google Scholar]
  11. Jones W. J., Nagle D. P. Jr, Whitman W. B. 1987; Methanogens and the diversity of archaebacteria. Microbiol Rev 51:135–177
    [Google Scholar]
  12. Joulian C., Patel B. K. C., Ollivier B., Garcia J.-L., Roger P. A. 2000; Methanobacterium oryzae sp. nov., a novel methanogenic rod isolated from a Philippines ricefield. Int J Syst Evol Microbiol 50:525–528 [CrossRef]
    [Google Scholar]
  13. König H. 1984; Isolation and characterization of Methanobacterium uliginosum sp. nov. from a marshy soil. Can J Microbiol 30:1477–1481 [CrossRef]
    [Google Scholar]
  14. Kotelnikova S., Macario A. J. L., Pedersen K. 1998; Methanobacterium subterraneum sp. nov., a new alkaliphilic, eurythermic and halotolerant methanogen isolated from deep granitic groundwater. Int J Syst Bacteriol 48:357–367 [CrossRef]
    [Google Scholar]
  15. Lai M. C., Shu C. M., Chen S. C., Lai L. J., Chiou M.-S., Hua J. J. 2000; Methanosarcina mazei strain O1M9704, methanogen with novel tubule isolated from estuarine environment. Curr Microbiol 41:15–20 [CrossRef]
    [Google Scholar]
  16. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  17. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  18. Owen R. J., Pitcher D. 1985; Current methods for estimating DNA base composition and levels of DNA-DNA hybridization. In Chemical Methods in Bacterial Systematics pp  67–93 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  19. Patel G. B., Sprott G. D., Fein J. E. 1990; Isolation and characterization of Methanobacterium espanolae sp. nov., a mesophilic, moderately acidiphilic methanogen. Int J Syst Bacteriol 40:12–18 [CrossRef]
    [Google Scholar]
  20. Reynolds E. 1963; The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212 [CrossRef]
    [Google Scholar]
  21. Shlimon A. G., Friedrich M. W., Niemann H., Ramsing N. B., Finster K. 2004; Methanobacterium aarhusense sp. nov., a novel methanogen isolated from a marine sediment (Aarhus Bay, Denmark. Int J Syst Evol Microbiol 54:759–763 [CrossRef]
    [Google Scholar]
  22. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:842–849 [CrossRef]
    [Google Scholar]
  23. Sudhir K., Koichiro T., Ingrid B. J., Masatoshi N. 2001 mega2: Molecular Evolutionary Genetics Analysis software Arizona State University; Tempe, AZ, USA:
    [Google Scholar]
  24. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  25. Worakit S., Boone D. R., Mah R. A., Abdel-Samie M.-E., El-Halwagi M. M. 1986; Methanobacterium alcaliphilum sp. nov., an H2-utilizing methanogen that grows at high pH values. Int J Syst Bacteriol 36:380–382 [CrossRef]
    [Google Scholar]
  26. Zehnder A. J. B., Wuhermann K. 1977; Physiology of a Methanobacterium strain AZ. Arch Microbiol 111:199–205 [CrossRef]
    [Google Scholar]
  27. Zellner G., Winter J. 1987; Secondary alcohols as hydrogen donors for CO2-reduction by methanogens. FEMS Microbiol Lett 44:323–328 [CrossRef]
    [Google Scholar]
  28. Zellner G., Bleicher K., Braun E., Kneifel H., Tindall B. J., Conway de Macario E., Winter J. 1989; Characterization of a new mesophilic secondary alcohol-utilizing methanogen, Methanobacterium palustre sp. nov. from a peat bog. Arch Microbiol 151:1–9
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63254-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63254-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error