1887

Abstract

Ten strains previously assigned to (=), LMG 1584 and eight reference strains of the genus were reclassified by 16S rRNA gene sequencing, DNA–DNA similarity, DNA base composition and phenotypic characteristics. The strains and LMG 1584 were included in the cluster of acetic acid bacteria (family ) by 16S rRNA gene sequences. Further, they were separated into seven distinct groups by DNA–DNA similarity. DNA–DNA similarity group I was identified as . DNA–DNA similarity group II was retained as sp., because DNA–DNA similarity between the strain and LTH 4560 could not be determined. This was due to a lack of availability of the type strain from any source. DNA–DNA similarity group III was regarded as a novel species, for which the name sp. nov. (type strain, LMG 1582=NRIC 0614) is proposed. DNA–DNA similarity group IV included the type strains of and , and three strains. This group was identified as because high values of DNA–DNA similarity were obtained between the type strains and has priority over . DNA–DNA similarity group V was identified as . DNA–DNA similarity group VI was regarded as a novel species, for which the name sp. nov. (type strain, LMG 1536=NRIC 0616) is proposed. DNA–DNA similarity group VII was reclassified as . The description of is emended.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63252-0
2006-09-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/9/2101.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63252-0&mimeType=html&fmt=ahah

References

  1. Asai, T., Iizuka, H. & Komagata, K. ( 1964; ). The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. J Gen Appl Microbiol 10, 95–126.[CrossRef]
    [Google Scholar]
  2. Bernardo, E. B., Neilan, B. A. & Couperwhite, I. ( 1998; ). Characterization, differentiation and identification of wild-type cellulose-synthesizing Acetobacter strains involved in nata de coco production. Syst Appl Microbiol 21, 599–608.[CrossRef]
    [Google Scholar]
  3. Boesch, C., Trček, J., Sievers, M. & Teuber, M. ( 1998a; ). Acetobacter intermedius, sp. nov. Syst Appl Microbiol 21, 220–229.[CrossRef]
    [Google Scholar]
  4. Boesch, C., Trček, J., Sievers, M. & Teuber, M. ( 1998b; ). Acetobacter intermedius sp. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB, List no. 67. Int J Syst Bacteriol 48, 1085–1086.[CrossRef]
    [Google Scholar]
  5. Brosius, J., Dull, T. J., Sleeter, D. D. & Noller, H. F. ( 1981; ). Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148, 107–127.[CrossRef]
    [Google Scholar]
  6. Carr, J. G. ( 1968; ). Methods for identifying acetic acid bacteria. In Identification Methods for Microbiologists (Society for Applied Bacteriology Technical Series no. 2), part B, pp. 1–8. Edited by B. M. Gibbs & D. A. Shapton. London: Academic Press.
  7. Cleenwerck, I., Vandemeulebroecke, K., Janssens, D. & Swings, J. ( 2002; ). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 52, 1551–1558.[CrossRef]
    [Google Scholar]
  8. De Ley, J. & Frateur, J. ( 1974; ). Genus Acetobacter Beijerinck 1898. In Bergey's Manual of Determinative Bacteriology, 8th edn, pp. 276–278. Edited by R. E. Buchanan & N. E. Gibbons. Baltimore: Williams & Wilkins.
  9. De Ley, J., Swings, J. & Gosselé, F. ( 1984; ). Genus Acetobacter Beijerinck 1898, 215AL. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 268–274. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  10. Dellaglio, F., Cleenwerck, I., Felis, G. E., Engelbeen, K., Janssens, D. & Marzotto, M. ( 2005; ). Descriptions of Gluconacetobacter swingsii sp. nov. and Gluconacetobacter rhaeticus sp. nov., isolated from Italian apple fruit. Int J Syst Evol Microbiol 55, 2365–2370.[CrossRef]
    [Google Scholar]
  11. Entani, E., Ohmori, S., Masai, H. & Suzuki, K.-I. ( 1985; ). Acetobacter polyoxogenes sp. nov., a new species of an acetic acid bacterium useful for producing vinegar with high acidity. J Gen Appl Microbiol 31, 475–490.[CrossRef]
    [Google Scholar]
  12. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  13. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  14. Felsenstein, J. ( 1983; ). Parsimony in systematics: biological and statistical issues. Annu Rev Ecol Syst 14, 313–333.[CrossRef]
    [Google Scholar]
  15. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  16. Forng, E. R., Anderson, S. M. & Cannon, R. E. ( 1989; ). Synthetic medium for Acetobacter xylinum that can be used for isolation of auxotrophic mutants and study of cellulose biosynthesis. Appl Environ Microbiol 55, 1317–1319.
    [Google Scholar]
  17. Frateur, J. ( 1950; ). Essai sur la systématique des Acetobacters. Cellule 53, 285–392 (in French).
    [Google Scholar]
  18. Gosselé, F., Swings, J., Kersters, K. & De Ley, J. ( 1983a; ). Numerical analysis of phenotypic features and protein gel electropherograms of Gluconobacter Asai 1935 emend. mut. char. Asai, Iizuka, and Komagata 1964. Int J Syst Bacteriol 33, 65–81.[CrossRef]
    [Google Scholar]
  19. Gosselé, F., Swings, J., Kersters, K., Pauwels, P. & De Ley, J. ( 1983b; ). Numerical analysis of phenotypic features and protein gel electrophoregrams of a wide variety of Acetobacter strains. Proposal for the improvement of the taxonomy of the genus Acetobacter Beijerinck 1898, 215. Syst Appl Microbiol 4, 338–368.[CrossRef]
    [Google Scholar]
  20. Jojima, Y., Mihara, Y., Suzuki, S., Yokozeki, K., Yamanaka, S. & Fudou, R. ( 2004; ). Saccharibacter floricola gen. nov., sp. nov., a novel osmophilic acetic acid bacterium isolated from pollen. Int J Syst Evol Microbiol 54, 2263–2267.[CrossRef]
    [Google Scholar]
  21. Katsura, K., Kawasaki, H., Potacharoen, W., Saono, S., Seki, T., Yamada, Y., Uchimura, T. & Komagata, K. ( 2001; ). Asaia siamensis sp. nov., an acetic acid bacterium in the α-Proteobacteria. Int J Syst Evol Microbiol 51, 559–563.
    [Google Scholar]
  22. Katsura, K., Yamada, Y., Uchimura, T. & Komagata, K. ( 2002; ). Gluconobacter asaii Mason and Claus 1989 is a junior subjective synonym of Gluconobacter cerinus Yamada and Akita 1984. Int J Syst Evol Microbiol 52, 1635–1640.[CrossRef]
    [Google Scholar]
  23. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  24. Kojima, Y., Tonouchi, N., Tsuchida, T., Yoshinaga, F. & Yamada, Y. ( 1998; ). The characterization of acetic acid bacteria efficiently producing bacterial cellulose from sucrose: the proposal of Acetobacter xylinus subsp. nonacetoxidans subsp. nov. Biosci Biotechnol Biochem 62, 185–187.[CrossRef]
    [Google Scholar]
  25. Komagata, K. & Suzuki, K. ( 1987; ). Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19, 161–206.
    [Google Scholar]
  26. Kondo, K. & Ameyama, M. ( 1958; ). Carbohydrate metabolism by Acetobacter species. I. Oxidative activity for various carbohydrates. Bull Agric Chem Soc Jpn 22, 369–372.[CrossRef]
    [Google Scholar]
  27. Lisdiyanti, P., Kawasaki, H., Seki, T., Yamada, Y., Uchimura, T. & Komagata, K. ( 2000; ). Systematic study of the genus Acetobacter with descriptions of Acetobacter indonesiensis sp. nov., Acetobacter tropicalis sp. nov., Acetobacter orleanensis (Henneberg 1906) comb. nov., Acetobacter lovaniensis ( Frateur 1950 ) comb. nov., and Acetobacter estunensis ( Carr 1963 ) comb. nov. J Gen Appl Microbiol 46, 147–165.[CrossRef]
    [Google Scholar]
  28. Lisdiyanti, P., Kawasaki, H., Widyastuti, Y., Saono, S., Seki, T., Yamada, Y., Uchimura, T. & Komagata, K. ( 2002; ). Kozakia baliensis gen. nov., sp. nov., a novel acetic acid bacterium in the α-Proteobacteria. Int J Syst Evol Microbiol 52, 813–818.[CrossRef]
    [Google Scholar]
  29. Lisdiyanti, P., Yamada, Y., Uchimura, T. & Komagata, K. ( 2003; ). Identification of Frateuria aurantia strains isolated from Indonesian sources. Microbiol Cult Coll 19, 81–90.
    [Google Scholar]
  30. Loganathan, P. & Nair, S. ( 2004; ). Swaminathania salitolerans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 54, 1185–1190.[CrossRef]
    [Google Scholar]
  31. Navarro, R. R. & Komagata, K. ( 1999; ). Differentiation of Gluconacetobacter liquefaciens and Gluconacetobacter xylinus on the basis of DNA base composition, DNA relatedness, and oxidation products from glucose. J Gen Appl Microbiol 45, 7–15.[CrossRef]
    [Google Scholar]
  32. Navarro, R. R., Uchimura, T. & Komagata, K. ( 1999; ). Taxonomic heterogeneity of strains comprising Gluconacetobacter hansenii. J Gen Appl Microbiol 45, 295–300.[CrossRef]
    [Google Scholar]
  33. Saito, H. & Miura, K. ( 1963; ). Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72, 619–629.[CrossRef]
    [Google Scholar]
  34. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  35. Schüller, G., Hertel, C. & Hammes, W. P. ( 2000; ). Gluconacetobacter entanii sp. nov., isolated from submerged high-acid industrial vinegar fermentations. Int J Syst Evol Microbiol 50, 2013–2020.[CrossRef]
    [Google Scholar]
  36. Shimwell, J. L. ( 1957; ). The true significance of Hoyer's medium in the differentiation of Acetobacter species. J Inst Brew 63, 44–45.[CrossRef]
    [Google Scholar]
  37. Shimwell, J. L., Carr, J. G. & Rhodes, M. E. ( 1960; ). Differentiation of Acetomonas and Pseudomonas. J Gen Microbiol 23, 283–286.[CrossRef]
    [Google Scholar]
  38. Sievers, M., Sellmer, S. & Teuber, M. ( 1992; ). Acetobacter europaeus sp. nov., a main component of industrial vinegar fermenters in central Europe. Syst Appl Microbiol 15, 368–392.
    [Google Scholar]
  39. Sokollek, S. J., Hertel, C. & Hammes, W. P. ( 1998; ). Description of Acetobacter oboediens sp. nov. and Acetobacter pomorum sp. nov., two new species isolated from industrial vinegar fermentations. Int J Syst Bacteriol 48, 935–940.[CrossRef]
    [Google Scholar]
  40. Sugawara, H., Tanaka, N. & Miyazaki, S. ( 2003; ). An e-workbench for the study of microbial diversity: the system design and basic functions. Microbiol Cult Coll 19, 59–67.
    [Google Scholar]
  41. Swings, J., Gillis, M. & Kersters, K. ( 1992; ). Phenotypic identification of acetic acid bacteria. In Identification Methods in Applied and Environmental Microbiology (The Society for Applied Bacteriology Technical Series no. 29), pp. 103–110. Edited by R. G. Board, D. Jones & F. A. Skinner. Oxford: Blackwell Scientific.
  42. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  43. Tanaka, M., Murakami, S., Shinke, R. & Aoki, K. ( 2000; ). Genetic characteristics of cellulose-forming acetic acid bacteria identified phenotypically as Gluconacetobacter xylinus. Biosci Biotechnol Biochem 64, 757–760.[CrossRef]
    [Google Scholar]
  44. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  45. Toyosaki, H., Kojima, Y., Tsuchida, T., Hoshino, K., Yamada, Y. & Yoshinaga, F. ( 1995; ). The characterization of an acetic acid bacterium useful for producing bacterial cellulose in agitation cultures: the proposal of Acetobacter xylinum subsp. sucrofermentans subsp. nov. J Gen Appl Microbiol 41, 307–314.[CrossRef]
    [Google Scholar]
  46. Trček, J. ( 2002; ). Genotypic characteristics of Gluconacetobacter hansenii LMG 1582 suggest its reclassification to a new species. Zebu Biotechnol Fake Unit Ljubljana Kempt 79, 19–26.
    [Google Scholar]
  47. Trček, J. & Teuber, M. ( 2002; ). Genetic and restriction analysis of the 16S–23S rDNA internal transcribed spacer regions of the acetic acid bacteria. FEMS Microbiol Lett 208, 69–75.
    [Google Scholar]
  48. Trček, J., Raspor, P. & Teuber, M. ( 2000; ). Molecular identification of Acetobacter isolates from submerged vinegar production, sequence analysis of plasmid pJK2-1 and application in the development of a cloning vector. Appl Microbiol Biotechnol 53, 289–295.[CrossRef]
    [Google Scholar]
  49. Vaughn, R. E. ( 1957; ). Genus III Acetobacter Beijerinck 1898. In Bergey's Manual of Determinative Bacteriology, 7th edn, pp.183–189. Edited by R. S. Breed, E. G. D. Murray & N. R. Smith. Baltimore: Williams & Wilkins.
  50. Yamada, Y., Aida, K. & Uemura, T. ( 1969; ). Enzymatic studies on the oxidation of sugar and sugar alcohol. V. Ubiquinone of acetic acid bacteria and its relation to classification of Gluconobacter and Acetobacter, especially of the so-called intermediate strains. J Gen Appl Microbiol 15, 186–196.
    [Google Scholar]
  51. Yamada, Y., Hoshino, K. & Ishikawa, T. ( 1997; ). The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level. Biosci Biotechnol Biochem 61, 1244–1251.[CrossRef]
    [Google Scholar]
  52. Yamada, Y., Hoshino, K. & Ishikawa, T. ( 1998; ). Gluconacetobacter corrig. (Gluconoacetobacter [sic]). In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB, List no. 64. Int J Syst Bacteriol 48, 327–328.[CrossRef]
    [Google Scholar]
  53. Yamada, Y., Katsura, K., Kawasaki, H., Widyastuti, Y., Saono, S., Seki, T., Uchimura, T. & Komagata, K. ( 2000; ). Asaia bogorensis gen. nov., sp. nov., an unusual acetic acid bacterium in the α-Proteobacteria. Int J Syst Evol Microbiol 50, 823–829.[CrossRef]
    [Google Scholar]
  54. Yukphan, P., Potacharoen, W., Tanasupawat, S., Tanticharoen, M. & Yamada, Y. ( 2004; ). Asaia krungthepensis sp. nov., an acetic acid bacterium in the α-Proteobacteria. Int J Syst Evol Microbiol 54, 313–316.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63252-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63252-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error