1887

Abstract

One hundred and seventy-eight lactobacilli isolated from wine were characterized by a polyphasic approach. Strains were phenotypically identified at genus and species level by classical tests including the analysis of cell morphology, homo/heterofermentative character, sugar fermentation patterns, growth at different temperatures and the optical nature of the isomer of lactic acid produced from glucose. Molecular techniques such as random amplification of polymorphic DNA (RAPD), amplified 16S rDNA restriction analysis (16S-ARDRA), PFGE-RFLP and ribotyping were used to characterize strains, and their potential for identification and/or typing was evaluated. The information obtained with these techniques was processed with the BioNumerics software in order to analyse relationships existing between isolated strains and various reference species of the genus. Then, taxonomic dendrograms were obtained, and this information allowed the proposal of molecular procedures suitable for the identification and typing of these wine micro-organisms. The techniques useful for both identification and typing were RAPD and ribotyping, while 16S-ARDRA was only useful for identification and PFGE-RFLP only for typing purposes. The wine strains were identified as (19 strains), (2 strains), (71 strains), (13 strains), (2 strains), (34 strains) and (10 strains).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63249-0
2005-01-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/1/ijs550197.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63249-0&mimeType=html&fmt=ahah

References

  1. Baele, M., Vaneechoute, M., Verhelst, R., Vancanneyt, M., Devriese, L. A. & Haesebrouck, F. ( 2002; ). Identification of Lactobacillus species using tDNA-PCR. J Microbiol Methods 50, 263–271.[CrossRef]
    [Google Scholar]
  2. Berthier, F. & Ehrlich, S. D. ( 1998; ). Rapid species identification within two groups of closely related lactobacilli using PCR primers that target the 16S/23S rRNA spacer region. FEMS Microbiol Lett 161, 97–106.[CrossRef]
    [Google Scholar]
  3. Björkroth, K. J., Schillinger, U., Geisen, R., Weiss, N., Holzapfel, W. H., Korkeala, H. & Vandamme, P. ( 2002; ). Taxonomic study of Weissella confusa and description of Weissella cibaria sp. nov., detected in food and clinical samples. Int J Syst Evol Microbiol 52, 141–148.
    [Google Scholar]
  4. Cai, Y., Okada, H., Mori, H., Benno, Y. & Nakase, T. ( 1999; ). Lactobacillus paralimentarius sp. nov., isolated from sourdough. Int J Syst Bacteriol 49, 1451–1455.[CrossRef]
    [Google Scholar]
  5. Cappuccino, J. G. & Sherman, N. ( 1987; ). Microbiology: a Laboratory Manual. Menlo Park, CA: Benjamin/Cummings.
  6. Chagnaud, P., Machinis, K., Coutte, L. A., Marecat, A. & Mercenier, A. ( 2001; ). Rapid PCR-based procedure to identify lactic acid bacteria: application to six common Lactobacillus species. J Microbiol Methods 44, 139–148.[CrossRef]
    [Google Scholar]
  7. Chenoll, E., Macián, M. C. & Aznar, R. ( 2003; ). Identification of Carnobacterium, Lactobacillus, Leuconostoc and Pediococcus by rDNA-based techniques. Syst Appl Microbiol 26, 546–556.[CrossRef]
    [Google Scholar]
  8. Cocconcelli, P. S., Porro, D., Galandini, S. & Senini, L. ( 1995; ). Development of RAPD protocol for typing of strains of lactic acid bacteria and enterococci. Lett Appl Microbiol 21, 376–379.[CrossRef]
    [Google Scholar]
  9. Collins, M. D. & Wallbanks, S. ( 1992; ). Comparative sequence analyses of the 16S rRNA genes of Lactobacillus minutus, Lactobacillus rimae and Streptococcus parvulus: proposal for the creation of a new genus Atopobium. FEMS Microbiol Lett 92, 235–240.[CrossRef]
    [Google Scholar]
  10. Collins, M. D., Farrow, J. A. E., Phillips, B. A., Ferusu, S. & Jones, D. ( 1987; ). Classification of Lactobacillus divergens, Lactobacillus piscicola and some catalase-negative, asporogenous, rod-shaped bacteria from poultry in a new genus, Carnobacterium. Int J Syst Bacteriol 37, 310–316.[CrossRef]
    [Google Scholar]
  11. Collins, M. D., Phillips, B. A. & Zanoni, P. ( 1989; ). Deoxyribonucleic acid homology studies of Lactobacillus casei, Lactobacillus paracasei sp. nov., subsp. paracasei and subsp. tolerans, and Lactobacillus rhamnosus sp. nov., com. nov. Int J Syst Bacteriol 39, 105–108.[CrossRef]
    [Google Scholar]
  12. Collins, M. D., Rodrigues, U., Ash, C., Aguirre, M., Farrow, J. A. E., Martínez-Murcia, A., Phillips, B. A., Williams, A. M. & Wallbanks, S. ( 1991; ). Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol Lett 77, 5–12.[CrossRef]
    [Google Scholar]
  13. Collins, M. D., Samelis, J., Metaxopoulos, J. & Wallbanks, S. ( 1993; ). Taxonomic studies on some Leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J Appl Bacteriol 75, 595–603.[CrossRef]
    [Google Scholar]
  14. Daud Khaled, A. K., Neilan, B. A., Henriksson, A. & Conway, P. L. ( 1997; ). Identification and phylogenetic analysis of Lactobacillus using multiplex RAPD-PCR. FEMS Microbiol Lett 153, 191–197.[CrossRef]
    [Google Scholar]
  15. Dellaglio, F., Felis, G. E. & Torriani, S. ( 2002; ). The status of the species Lactobacillus casei (Orla-Jensen 1926) Hansen and Lessel 1972 and Lactobacillus paracasei Collins et al. 1989 . Request for an Opinion. Int J Syst Evol Microbiol 52, 285–287.
    [Google Scholar]
  16. Dellaglio, F., Torriani, S. & Felis, G. E. ( 2004; ). Reclassification of Lactobacillus cellobiosus Rogosa et al. 1953 as Lactobacillus fermentum Beijerinck 1901. Int J Syst Evol Microbiol 54, 809–812.[CrossRef]
    [Google Scholar]
  17. Dicks, L. M. T. & van Vuuren, H. J. J. ( 1988; ). Identification and physiological characteristics of heterofermentative strains of Lactobacillus from South African red wines. J Appl Bacteriol 64, 505–513.[CrossRef]
    [Google Scholar]
  18. Dubernet, S., Desmasures, N. & Guéguen, M. ( 2002; ). A PCR-based method for identification of lactobacilli at the genus level. FEMS Microbiol Lett 214, 271–275.[CrossRef]
    [Google Scholar]
  19. Edwards, U., Rogall, T., Blocker, H., Emde, M. & Bottger, E. C. ( 1989; ). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17, 7843–7853.[CrossRef]
    [Google Scholar]
  20. Edwards, C. G., Haag, K. M., Collins, M. D., Hutson, R. A. & Huang, Y. C. ( 1998; ). Lactobacillus kunkeei sp. nov., a spoilage organism associated with grape juice fermentations. J Appl Microbiol 84, 698–702.[CrossRef]
    [Google Scholar]
  21. Edwards, C. G., Collins, M. D., Lawson, P. A. & Rodriguez, A. V. ( 2000; ). Lactobacillus nagelii sp. nov., an organism isolated from a partially fermented wine. Int J Syst Evol Microbiol 50, 699–702.[CrossRef]
    [Google Scholar]
  22. Ehrmann, M. A., Martin, R. A. & Vogel, R. F. ( 2003; ). Molecular analysis of sourdough reveals Lactobacillus mindensis sp. nov. Int J Syst Evol Microbiol 53, 7–13.[CrossRef]
    [Google Scholar]
  23. Euzéby, J. P. ( 1997; ). List of bacterial names with standing in nomenclature: a folder available on the Internet (URL: http://www.bacterio.cict.fr/). Int J Syst Bacteriol 47, 590–592.[CrossRef]
    [Google Scholar]
  24. Ferrero, M., Cesena, C., Morelli, L., Scolari, G. & Vescovo, M. ( 1996; ). Molecular characterization of Lactobacillus casei strains. FEMS Microbiol Lett 140, 215–219.[CrossRef]
    [Google Scholar]
  25. Frayne, R. F. ( 1986; ). Direct analysis of the major organic components in grape must and wine using high performance liquid chromatography. Am J Enol Vitic 37, 281–287.
    [Google Scholar]
  26. Gevers, D., Huys, G. & Swings, J. ( 2001; ). Applicability of rep-PCR fingerprinting for identification Lactobacillus species. FEMS Microbiol Lett 205, 31–36.[CrossRef]
    [Google Scholar]
  27. Giraffa, G., De Vecchi, P. & Rossetti, L. ( 1998; ). Identification of Lactobacillus delbrueckii subsp. lactis dairy isolates by amplified rDNA restriction analysis. J Appl Microbiol 85, 918–924.[CrossRef]
    [Google Scholar]
  28. Hammes, W. P., Weiss, N. & Holzapfel, W. H. ( 1991; ). The genera Lactobacillus and Carnobacterium. In The Prokaryotes, 2nd edn, vol. 2, pp. 1535–1594. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  29. Kandler, O. & Weiss, N. ( 1986; ). Genus Lactobacillus Beijerinck 1901, 212AL. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1208–1234. Edited by P. H. A. Sneath, N. S. Mair, M. E. Sharpe & J. G. Holt. Baltimore: William & Wilkins.
  30. Kröckel, L., Schillinger, U., Franz, C. M. A. P., Bantleon, A. & Ludwig, W. ( 2003; ). Lactobacillus versmoldensis sp. nov. isolated from raw fermented sausage. Int J Syst Evol Microbiol 53, 513–517.[CrossRef]
    [Google Scholar]
  31. Leisner, J. J., Vancanneyt, M., Goris, J., Christensen, H. & Rusul, G. ( 2000; ). Description of Paralactobacillus selangorensis gen. nov., sp. nov., a new lactic acid bacterium isolated from chilli bo, a Malaysian food ingredient. Int J Syst Evol Microbiol 50, 19–24.[CrossRef]
    [Google Scholar]
  32. Lonvaud-Funel, A., Joyeux, A. & Ledoux, O. ( 1991; ). Specific enumeration of lactic acid bacteria in fermenting grape must and wine by colony hybridization with non-isotopic DNA probes. J Appl Bacteriol 71, 501–508.[CrossRef]
    [Google Scholar]
  33. Lortal, S., Valence, F., Bizet, D. & Maubois, J. L. ( 1997; ). Electrophoretic pattern of peptidoglycan hydrolases, a new tool for bacterial species identification: application to 10 Lactobacillus species. Res Microbiol 148, 461–474.[CrossRef]
    [Google Scholar]
  34. Ludwig, W., Strunk, O., Westram, R. & 29 other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  35. Matushek, M. G., Bonten, M. J. M. & Hayden, M. K. ( 1996; ). Rapid preparation of bacterial DNA for pulsed-field gel electrophoresis. J Clin Microbiol 34, 2598–2600.
    [Google Scholar]
  36. Morotomi, M., Yuki, N., Kado, Y., Kushiro, A., Shimazaki, T., Watanabe, K. & Yuyama, T. ( 2002; ). Lactobacillus equi sp. nov., a predominant intestinal Lactobacillus species of the horse isolated from faeces of healthy horses. Int J Syst Evol Microbiol 52, 211–214.
    [Google Scholar]
  37. Motoyama, Y., Funahashi, W. & Ogata, T. ( 2000; ). Characterization of Lactobacillus spp. by Ribotyping. J Am Soc Brew Chem 58, 1–3.
    [Google Scholar]
  38. Nigatu, A., Ahrné, S. & Molin, G. ( 2001; ). Randomly amplified polymorphic DNA (RAPD) profiles for the distinction of Lactobacillus species. Antonie van Leeuwenhoek 79, 1–6.[CrossRef]
    [Google Scholar]
  39. Nour, M. ( 1998; ). 16S-23S and 23S-5S intergenic spacer regions of lactobacilli: nucleotide sequence, secondary structure and comparative analysis. Res Microbiol 149, 433–448.[CrossRef]
    [Google Scholar]
  40. Patarata, L., Pimentel, M. S., Pot, B., Kersters, K. & Faia, A. M. ( 1994; ). Identification of lactic acid bacteria isolated from Portuguese wines and musts by SDS-PAGE. J Appl Bacteriol 76, 288–293.[CrossRef]
    [Google Scholar]
  41. Quere, F., Deschamps, A. & Urdaci, M. C. ( 1997; ). DNA probe and PCR-specific reaction for Lactobacillus plantarum. J Appl Microbiol 82, 783–790.[CrossRef]
    [Google Scholar]
  42. Rizzo, A. F., Korkeala, H. & Mononen, I. ( 1987; ). Gas chromatography analysis of cellular fatty acids and neutral monosaccharides in the identification of lactobacilli. Appl Environ Microbiol 53, 2883–2888.
    [Google Scholar]
  43. Rodas, A. M., Ferrer, S. & Pardo, I. ( 2003; ). 16S-ARDRA, a tool for identification of lactic acid bacteria isolated from grape must and wine. Syst Appl Microbiol 26, 412–422.[CrossRef]
    [Google Scholar]
  44. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  45. Schillinger, U., Holzapfel, W. & Kandler, O. ( 1989; ). Nucleic acid hybridization studies on Leuconostoc and heterofermentative lactobacilli and description of Leuconostoc amelibiosum sp. nov. Syst Appl Microbiol 12, 48–55.[CrossRef]
    [Google Scholar]
  46. Schleifer, K. H. & Ludwig, W. ( 1995; ). Phylogeny of the genus Lactobacillus and related genera. Syst Appl Microbiol 18, 461–467.[CrossRef]
    [Google Scholar]
  47. Sohier, D. & Lonvaud-Funel, A. ( 1998; ). Rapid and sensitive in situ hybridization method for detecting and identifying lactic acid bacteria in wine. Food Microbiol 15, 391–397.[CrossRef]
    [Google Scholar]
  48. Sohier, D., Coulon, J. & Lonvaud-Funel, A. ( 1999; ). Molecular identification of Lactobacillus hilgardii and genetic relatedness with Lactobacillus brevis. Int J Syst Bacteriol 49, 1075–1081.[CrossRef]
    [Google Scholar]
  49. Tanasupawat, S., Shida, O., Okada, S. & Komagata, K. ( 2000; ). Lactobacillus acidipiscis sp. nov. and Weissella thailandensis sp. nov., isolated from fermented fish in Thailand. Int J Syst Evol Microbiol 50, 1479–1485.[CrossRef]
    [Google Scholar]
  50. Tompkins, T. A., Stewart, R., Savard, L., Rusell, I. & Dowhanick, T. M. ( 1996; ). RAPD-PCR characterization of brewery yeast and beer spoilage bacteria. J Am Soc Brew Chem 54, 91–96.
    [Google Scholar]
  51. Vandamme, P., Pot, B., Gillis, M., De Vos, P., Kersters, K. & Swings, J. ( 1996; ). Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60, 407–438.
    [Google Scholar]
  52. Ventura, M. & Zink, R. ( 2002; ). Specific identification and molecular typing analysis of Lactobacillus johnsonii by using PCR-based methods and pulsed-field gel electrophoresis. FEMS Microbiol Lett 217, 141–154.[CrossRef]
    [Google Scholar]
  53. Ventura, M., Casas, I. A., Morelli, L. & Callegari, M. L. ( 2000; ). Rapid amplified ribosomal DNA restriction analysis (ARDRA) identification of Lactobacillus spp. isolated from fecal and vaginal samples. Syst Appl Microbiol 23, 504–509.[CrossRef]
    [Google Scholar]
  54. Weiss, N., Schillinger, U. & Kandler, O. ( 1983; ). Lactobacillus trichodes, and Lactobacillus heterohiochii, subjective synonyms of Lactobacillus fructivorans. Syst Appl Microbiol 4, 507–511.[CrossRef]
    [Google Scholar]
  55. Yoon, J. H., Kang, S. S., Mheen, T. I. & 7 other authors ( 2000; ). Lactobacillus kimchii sp. nov., a new species from kimchii. Int J Syst Evol Microbiol 50, 1789–1795.
    [Google Scholar]
  56. Zanoni, P., Farrow, J. A. E., Phillips, B. A. & Collins, M. D. ( 1987; ). Lactobacillus pentosus (Fred, Peterson and Anderson) sp. nov., nom. rev. Int J Syst Bacteriol 37, 339–341.[CrossRef]
    [Google Scholar]
  57. Zapparoli, G., Torriani, S. & Dellaglio, F. ( 1998; ). Differentiation of Lactobacillus sanfranciscensis strains by randomly amplified polymorphic DNA and pulsed-field electrophoresis. FEMS Microbiol Lett 166, 325–332.[CrossRef]
    [Google Scholar]
  58. Zhong, W., Millsap, K., Bialkowska-Hobrzanska, H. & Reid, G. ( 1998; ). Differentiation of Lactobacillus species by molecular typing. Appl Environ Microbiol 64, 2418–2423.
    [Google Scholar]
  59. Zúñiga, M., Pardo, I. & Ferrer, S. ( 1993; ). An improved medium for distinguishing between homofermentative and heterofermentative lactic acid bacteria. Int J Food Microbiol 18, 37–42.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63249-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63249-0
Loading

Data & Media loading...

Supplements

vol. , part 1, pp. 197 - 207

Dendrograms derived from phenotypic patterns of heterofermentative lactobacilli (I) and homofermentative/facultatively heterofermentative lactobacilli (II). Simple matching coefficient and the UPGMA clustering method were used to perform the analysis.

Dendrogram derived from the comparison of combined RFLP-PFGE patterns ( I, I and I) obtained from wine lactic acid bacteria (LAB) and reference strains. The clustering is based on the UPGMA method, levels of similarity between patterns were calculated by using the Dice coefficient for I and I and Pearson's coefficient for I. Abbreviations: , ; , subsp. ; ; subsp. ; ; subsp. ; ; subsp. ; , .

Dendrogram derived from comparison of the combined 16S-ARDRA ( I and I) obtained from wine LAB and reference strains. Pearson's coefficient and the UPGMA clustering method were used for the analysis.

RAPD patterns obtained with primers 17R (I), 16R and COC (II). Lanes 1 and 20, 1 Kb ladder Plus (Invitrogen). Lanes 2-19: strains 40, CECT 216, 404, CECT 922 , 25, 328, 389, 492, NCFB 264 , 451, subsp. CECT 4022 , 16, 147, 202, CECT 748 , 82, 52, CECT 4149.

Dendrogram derived from comparison of the combined RAPD patterns (16R, 17R and COC) obtained from wine LAB and reference strains. Pearson's coefficient and the UPGMA clustering method were used for the analysis.

Dendrogram derived from RI ribotypes of wine lactobacilli and reference strains. Pearson's coefficient and the UPGMA clustering method were used for the analysis.

16S rRNA gene sequence similarity values between 10 wine strains and reference strains of some species.

[Single PDF file](448 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error