1887

Abstract

On the basis of phenotypic and DNA–DNA reassociation studies, strain CCUG 34545 has been considered to represent a distinct subspecies, subsp. . However, in several independent studies dealing with and strains, the subspecies division of has been found to be controversial. The original study distinguishing the two subspecies within both and also lacked 16S rRNA gene sequence analyses. Therefore, the taxonomic position of subsp. CCUG 34545 was re-evaluated in a polyphasic taxonomy study that included 16S rRNA gene sequence analysis, DNA–DNA reassociation, DNA G+C content determination, numerical analysis of ribotypes and whole-cell protein patterns and the examination of some fundamental phenotypic properties. The results obtained indicate that strain CCUG 34545 and its duplicate, CCUG 41580, are subsp. strains and that subsp. is a later synonym of subsp. .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63164-0
2004-09-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/5/ijs541621.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63164-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Berthier, F. & Ehrlich, S. D. ( 1999; ). Genetic diversity within Lactobacillus sakei and Lactobacillus curvatus and design of PCR primers for its detection using randomly amplified polymorphic DNA. Int J Syst Bacteriol 49, 997–1007.[CrossRef]
    [Google Scholar]
  3. Björkroth, J. & Korkeala, H. ( 1996a; ). Evaluation of Lactobacillus sake contamination in vacuum-packaged sliced cooked meat products by ribotyping. J Food Prot 59, 398–401.
    [Google Scholar]
  4. Björkroth, J. & Korkeala, H. ( 1996b; ). rRNA gene restriction patterns as a characterization tool for Lactobacillus sake strains producing ropy slime. Int J Food Microbiol 30, 293–302.[CrossRef]
    [Google Scholar]
  5. Blumberg, H. M., Kielbauch, J. A. & Wachsmuth, I. K. ( 1991; ). Molecular epidemiology of Yersinia enterocolitica O : 3 infections: use of chromosomal DNA restriction fragment length polymorphism of rRNA genes. J Clin Microbiol 29, 2368–2374.
    [Google Scholar]
  6. Briggs, M. ( 1953; ). The classification of lactobacilli by means of physiological tests. J Appl Bacteriol 54, 45–56.
    [Google Scholar]
  7. Champomier-Vergès, M.-C., Chaillou, S., Cornet, M. & Zagorec, M. ( 2002; ). Erratum to “Lactobacillus sakei: recent developments and future prospects”. Res Microbiol 153, 115–123.[CrossRef]
    [Google Scholar]
  8. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). Quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  9. Grimont, F. & Grimont, P. A. D. ( 1986; ). Ribosomal ribonucleic acid gene restriction patterns as potential taxonomic tools. Ann Inst Pasteur Microbiol 137B, 165–175.
    [Google Scholar]
  10. Hammes, W. P. & Vogel, R. F. ( 1995; ). The genus Lactobacillus. In The Genera of Lactic Acid Bacteria, vol. 2, pp. 19–54. Edited by B. J. B. Wood & W. H. Holzapfel. London: Blackie Academic & Professional.
  11. Jessen, B. ( 1995; ). Starter culture for meat fermentation. In Fermented Meats, pp. 130–159. Edited by G. Campbell-Platt & P. E. Cook. London: Blackie Academic & Professional.
  12. Klein, G., Dicks, L. M. T., Pack, A., Hack, B., Zimmermann, K., Dellaglio, F. & Reuter, G. ( 1996; ). Emended descriptions of Lactobacillus sake (Katagiri, Kitahara, and Fukami) and Lactobacillus curvatus (Abo-Elnaga and Kandler): numerical classification revealed by protein fingerprinting and identification based on biochemical patterns and DNA-DNA hybridizations. Int J Syst Bacteriol 46, 367–376.[CrossRef]
    [Google Scholar]
  13. Lyhs, U., Björkroth, J. & Korkeala, H. ( 1999; ). Characterisation of lactic acid bacteria from spoiled, vacuum-packaged, cold-smoked rainbow trout using ribotyping. Int J Food Microbiol 52, 77–84.[CrossRef]
    [Google Scholar]
  14. Lyhs, U., Korkeala, H. & Björkroth, J. ( 2002; ). Identification of lactic acid bacteria from spoiled, vacuum-packaged ‘gravad’ rainbow trout using ribotyping. Int J Food Microbiol 72, 147–153.[CrossRef]
    [Google Scholar]
  15. Mäkelä, P., Schillinger, U., Korkeala, H. & Holzapfel, W. H. ( 1992; ). Classification of ropy slime-producing lactic acid bacteria based on DNA-DNA homology, and identification of Lactobacillus sake and Leuconostoc amelibiosum as dominant spoilage organisms in meat products. Int J Food Microbiol 16, 167–172.[CrossRef]
    [Google Scholar]
  16. Pitcher, D. G., Saunders, N. A. & Owen, R. J. ( 1989; ). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8, 151–156.[CrossRef]
    [Google Scholar]
  17. Pot, B., Vandamme, P. & Kersters, K. ( 1994; ). Analysis of electrophoretic whole-organism protein fingerprints. In Modern Microbiological Methods. Chemical Methods in Prokaryotic Systematics, pp. 493–521. Edited by M. Goodfellow & A. G. Donnel. Chichester: Wiley.
  18. Reuter, G. ( 1970; ). Lactobazillen und eng verwandte mikroorganismen in fleisch und fleischerzeugnissen. Fleischwirtschaft 7, 954–962.
    [Google Scholar]
  19. Ross, R. P., Morgan, S. & Hill, C. ( 2002; ). Preservation and fermentation: past, present and future. Int J Food Microbiol 79, 3–16.[CrossRef]
    [Google Scholar]
  20. Sanger, F., Nicklen, S. & Coulson, A. R. ( 1977; ). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463–5467.[CrossRef]
    [Google Scholar]
  21. Susiluoto, T., Korkeala, H. & Björkroth, J. ( 2002; ). Leuconostoc gasicomitatum is the dominating lactic acid bacteria in retail modified-atmosphere-packaged marinated broiler meat strips on sell-by day. Int J Food Microbiol 80, 89–97.
    [Google Scholar]
  22. Torriani, S., van Reenen, C. A., Klein, G., Reuter, G., Dellaglio, F. & Dicks, L. M. T. ( 1996; ). Lactobacillus curvatus subsp. curvatus subsp. nov. and Lactobacillus curvatus subsp. melibiosus subsp. nov. and Lactobacillus sake subsp. sake subsp. nov. and Lactobacillus sake subsp. carnosus subsp. nov., new subspecies of Lactobacillus curvatus Abo-Elnaga and Kandleri 1965 and Lactobacillus sake Katagiri, Kitahara, and Fukami 1934 ( Klein et al. 1996 , emended descriptions), respectively. Int J Syst Bacteriol 46, 1158–1163.[CrossRef]
    [Google Scholar]
  23. Xu, H.-X., Kawamura, Y., Li, N., Zhao, L., Li, T.-M., Li, Z.-Y., Shu, S. & Ezaki, T. ( 2000; ). A rapid method for determining the G+C content of bacterial chromosomes by monitoring fluorescence intensity during DNA denaturation in a capillary tube. Int J Syst Evol Microbiol 50, 1463–1469.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63164-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63164-0
Loading

Data & Media loading...

vol. , part 5, pp. 1621–1626

Dendrograms and banding patterns associated with RI and dIII ribotypes and a dendrogram obtained by combining the equally weighted pattern information of both RI and dIII ribotypes into one numerical analysis are available, together with the complete DNA–DNA reassociation results, to download. [PDF](355KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error