1887

Abstract

A moderately halophilic, aerobic, motile, Gram-negative, rod-shaped bacterium (strain LV4) was isolated from saline soil around the lake Laguna Verde in the Bolivian Andes. The organism is a heterotroph, able to utilize various carbohydrates as a carbon source. It showed tryptophan deaminase, oxidase and catalase activity, but was unable to produce indole or HS; nitrate was not reduced. The G+C content of the genomic DNA was 56·1 mol%. The pH range for growth was 5–10, temperature range was 0–45 °C and the range of NaCl concentrations was 0–25 % (w/v). On the basis of 16S rRNA gene sequence analysis, strain LV4 was found to be closely related to DSM 6769 and DSM 7218; however, its DNA–DNA relatedness with these type strains was low. Strain LV4 resembled other species with respect to various physiological, biochemical and nutritional characteristics but also exhibited differences. Thus, a novel species, sp. nov., is proposed, with LV4 (=CCUG 47987=ATCC BAA-761) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63153-0
2004-11-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/6/ijs541921.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63153-0&mimeType=html&fmt=ahah

References

  1. Anzai, Y., Kim, H., Park, J. Y., Wakabayashi, H. & Oyaizu, H. ( 2000; ). Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50, 1563–1589.[CrossRef]
    [Google Scholar]
  2. Arahal, D. R., Garcia, M. T., Ludwig, W., Schleifer, K. H. & Ventosa, A. ( 2001a; ). Transfer of Halomonas canadensis and Halomonas israelensis to the genus Chromohalobacter as Chromohalobacter canadensis comb. nov. and Chromohalobacter israelensis comb. nov. Int J Syst Evol Microbiol 51, 1443–1448.
    [Google Scholar]
  3. Arahal, D. R., García, M. T., Vargas, C., Cánovas, D., Nieto, J. J. & Ventosa, A. ( 2001b; ). Chromohalobacter salexigens sp. nov., a moderately halophilic species that includes Halomonas elongata DSM 3043 and ATCC 33174. Int J Syst Evol Microbiol 51, 1457–1462.
    [Google Scholar]
  4. Arahal, D. R., Ludwig, W., Schleifer, K. H. & Ventosa, A. ( 2002; ). Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses. Int J Syst Evol Microbiol 52, 241–249.
    [Google Scholar]
  5. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M. ( 1977; ). A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef]
    [Google Scholar]
  6. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  7. Escara, J. F. & Hutton, J. R. ( 1980; ). Thermal stability and renaturation of DNA in dimethyl sulphoxide solutions: acceleration of the renaturation rate. Biopolymers 19, 1315–1327.[CrossRef]
    [Google Scholar]
  8. Huss, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  9. Huval, J. H., Latta, R., Wallace, R., Kushner, D. J. & Vreeland, R. H. ( 1995; ). Description of two new species of Halomonas: Halomonas israelensis sp. nov. and Halomonas canadensis sp. nov. Can J Microbiol 41, 1124–1131.[CrossRef]
    [Google Scholar]
  10. Jahnke, K. D. ( 1992; ). Basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD System 2600 spectrometer on a PC/XT/AT type personal computer. J Microbiol Methods 15, 61–73.[CrossRef]
    [Google Scholar]
  11. Johnson, J. L. ( 1994; ). Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology, pp. 655–682. Edited by P. Gerhart, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  12. Kersters, K., Ludwig, W., Vancanneyt, M., De Vos, P., Gillis, M. & Schleifer, K. H. ( 1996; ). Recent changes in the classification of the pseudomonads: an overview. Syst Appl Microbiol 19, 465–477.[CrossRef]
    [Google Scholar]
  13. Maidak, B. L., Cole, J. R., Lilburn, T. G. & 9 other authors ( 2000; ). The RDP (Ribosomal Database Project) continues. Nucleic Acids Res 28, 173–174.[CrossRef]
    [Google Scholar]
  14. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  15. Morita, R. Y. ( 1975; ). Psychrophilic bacteria. Bacteriol Rev 39, 144–167.
    [Google Scholar]
  16. Oren, A. ( 2002; ). Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28, 56–63.[CrossRef]
    [Google Scholar]
  17. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  18. Sánchez-Porro, C., Martín, S., Mellado, E. & Ventosa, A. ( 2003; ). Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol 94, 295–300.[CrossRef]
    [Google Scholar]
  19. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 611–651. Edited by P. Gerhart, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  20. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  21. Ventosa, A., Quesada, E., Rodriguez-Valera, F., Ruiz-Berraquero, F. & Ramos-Cormenzana, A. ( 1982; ). Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128, 1959–1968.
    [Google Scholar]
  22. Ventosa, A., Gutierrez, M. C., García, M. T. & Ruiz-Berraquero, F. ( 1989; ). Classification of “Chromobacterium marismortui” in a new genus, Chromohalobacter gen. nov., as Chromohalobacter marismortui comb. nov., nom. rev. Int J Syst Bacteriol 39, 382–386.[CrossRef]
    [Google Scholar]
  23. Ventosa, A., Nieto, J. J. & Oren, A. ( 1998; ). Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62, 504–544.
    [Google Scholar]
  24. Vreeland, R. H. ( 1987; ). Mechanisms of halotolerance in microorganisms. Crit Rev Microbiol 14, 311–356.[CrossRef]
    [Google Scholar]
  25. Vreeland, R. H., Litchfield, C. D., Martin, E. L. & Elliot, E. ( 1980; ). Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30, 485–495.[CrossRef]
    [Google Scholar]
  26. Wayne, L. G., Brenner, D. J., Colwell, R. R. & 9 other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  27. Weisburg, W. G., Barns, S. M., Pelletier, D. & Lane, D. J. ( 1991; ). Ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63153-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63153-0
Loading

Data & Media loading...

vol. , part 6, pp. 1921–1926

Transmission electron micrographs of (strain LV4 ), showing that some of the cells become longer and thinner with increasing size, are available to download. [PDF](230 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error