1887

Abstract

A moderately halophilic, aerobic, motile, Gram-negative, rod-shaped bacterium (strain LV4) was isolated from saline soil around the lake Laguna Verde in the Bolivian Andes. The organism is a heterotroph, able to utilize various carbohydrates as a carbon source. It showed tryptophan deaminase, oxidase and catalase activity, but was unable to produce indole or HS; nitrate was not reduced. The G+C content of the genomic DNA was 56·1 mol%. The pH range for growth was 5–10, temperature range was 0–45 °C and the range of NaCl concentrations was 0–25 % (w/v). On the basis of 16S rRNA gene sequence analysis, strain LV4 was found to be closely related to DSM 6769 and DSM 7218; however, its DNA–DNA relatedness with these type strains was low. Strain LV4 resembled other species with respect to various physiological, biochemical and nutritional characteristics but also exhibited differences. Thus, a novel species, sp. nov., is proposed, with LV4 (=CCUG 47987=ATCC BAA-761) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63153-0
2004-11-01
2021-03-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/6/ijs541921.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63153-0&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kim H., Park J. Y., Wakabayashi H., Oyaizu H. 2000; Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589 [CrossRef]
    [Google Scholar]
  2. Arahal D. R., Garcia M. T., Ludwig W., Schleifer K. H., Ventosa A. 2001a; Transfer of Halomonas canadensis and Halomonas israelensis to the genus Chromohalobacter as Chromohalobacter canadensis comb. nov. and Chromohalobacter israelensis comb. nov. Int J Syst Evol Microbiol 51:1443–1448
    [Google Scholar]
  3. Arahal D. R., García M. T., Vargas C., Cánovas D., Nieto J. J., Ventosa A. 2001b; Chromohalobacter salexigens sp. nov., a moderately halophilic species that includes Halomonas elongata DSM 3043 and ATCC 33174. Int J Syst Evol Microbiol 51:1457–1462
    [Google Scholar]
  4. Arahal D. R., Ludwig W., Schleifer K. H., Ventosa A. 2002; Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses. Int J Syst Evol Microbiol 52:241–249
    [Google Scholar]
  5. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  7. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulphoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  8. Huss V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  9. Huval J. H., Latta R., Wallace R., Kushner D. J., Vreeland R. H. 1995; Description of two new species of Halomonas : Halomonas israelensis sp.nov. and Halomonas canadensis sp. nov. Can J Microbiol 41:1124–1131 [CrossRef]
    [Google Scholar]
  10. Jahnke K. D. 1992; Basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD System 2600 spectrometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  11. Johnson J. L. 1994; Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology . pp  655–682 Edited by Gerhart P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  12. Kersters K., Ludwig W., Vancanneyt M., De Vos P., Gillis M., Schleifer K. H. 1996; Recent changes in the classification of the pseudomonads: an overview. Syst Appl Microbiol 19:465–477 [CrossRef]
    [Google Scholar]
  13. Maidak B. L., Cole J. R., Lilburn T. G. 9 other authors 2000; The RDP (Ribosomal Database Project) continues. Nucleic Acids Res 28:173–174 [CrossRef]
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  15. Morita R. Y. 1975; Psychrophilic bacteria. Bacteriol Rev 39:144–167
    [Google Scholar]
  16. Oren A. 2002; Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63 [CrossRef]
    [Google Scholar]
  17. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  18. Sánchez-Porro C., Martín S., Mellado E., Ventosa A. 2003; Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol 94:295–300 [CrossRef]
    [Google Scholar]
  19. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp  611–651 Edited by Gerhart P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  20. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  21. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1982; Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968
    [Google Scholar]
  22. Ventosa A., Gutierrez M. C., García M. T., Ruiz-Berraquero F. 1989; Classification of “ Chromobacterium marismortui ” in a new genus, Chromohalobacter gen. nov., as Chromohalobacter marismortui comb. nov., nom. rev.. Int J Syst Bacteriol 39382–386 [CrossRef]
    [Google Scholar]
  23. Ventosa A., Nieto J. J., Oren A. 1998; Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544
    [Google Scholar]
  24. Vreeland R. H. 1987; Mechanisms of halotolerance in microorganisms. Crit Rev Microbiol 14:311–356 [CrossRef]
    [Google Scholar]
  25. Vreeland R. H., Litchfield C. D., Martin E. L., Elliot E. 1980; Halomonas elongata , a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30:485–495 [CrossRef]
    [Google Scholar]
  26. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  27. Weisburg W. G., Barns S. M., Pelletier D., Lane D. J. 1991; Ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63153-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63153-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error