1887

Abstract

A facultative anaerobic bacterium, strain FaiI3, was isolated from samples collected from the free-flowing waters of a bore well (Fairlea Bore, registration number 3768) which taps into the Australian Great Artesian Basin subsurface thermal aquifer. Strain FaiI3 developed yellow to pale-yellow colonies (0·5–1·5 mm) after 48 h. The non-spore forming rods (0·5×1–3 μm) were slightly curved, occurred singly and as pairs and were motile with a single polar flagellum. Cells tended to form clumps in liquid medium and rosettes were commonly observed. The cells stained Gram-negative and electron micrographs of thin sections revealed a multi-layered complex Gram-negative cell wall structure. Strain FaiI3 grew optimally at 40–41 °C, with growth observed at 45 °C but not at 50 °C. The pH growth range was between pH 6 and 9 and optimal growth occurred between pH 6 and 6·5. Strain FaiI3 grew best with yeast extract as the sole carbon and energy source. Peptone, yeast extract, acetate, xylose, sucrose, glucose, glycerol, succinate, butyrate, lactate, fumarate, citrate, -phenylalanine, cellobiose and gelatin supported growth but maltose, fructose, glycine, ethanol, benzoate and oxalate did not. Tyrosine was produced from -phenylalanine. Strain FaiI3 was catalase-positive and oxidase-negative and did not hydrolyse starch. Growth was inhibited by neomycin, tetracycline, streptomycin, chloramphenicol, ampicillin, vancomycin and spectinomycin. The G+C content was determined to be 66·5±0·5 mol%. On the basis of the 16S rRNA gene sequence analysis, strain FaiI3 was assigned as a novel species of the genus , sp. nov. in the order , subclass -, class . The type strain is FaiI3 (=ATCC BAA-294=DSM 14363).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63138-0
2004-11-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/6/ijs542141.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63138-0&mimeType=html&fmt=ahah

References

  1. Abraham W. R., Strompl C., Meyer H. 8 other authors 1999; Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter . Int J Syst Bacteriol 49:1053–1073 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Andrews K. T., Patel B. K. 1996; Fervidobacterium gondwanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. Int J Syst Bacteriol 46:265–269 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  5. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Window 95/98/NT. Nucleic Acid Symp Ser 41:95–98
    [Google Scholar]
  6. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. H. New York: Academic Press;
    [Google Scholar]
  7. Kanso S., Patel B. K. C. 2003; Microvirga subterraneum gen. nov. sp. nov. a moderate thermophile from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 53:401–406 [CrossRef]
    [Google Scholar]
  8. Kanso S., Greene A. C., Patel B. K. C. 2002; Bacillus subterraneus sp. nov., an iron- and manganese-reducing bacterium from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 52:869–874 [CrossRef]
    [Google Scholar]
  9. Lingens F., Blecher R., Blecher H., Blobel F., Eberspächer J., Fröhner C., Görisch H., Görisch H., Layh G. 1985; Phenylobacterium immobile gen. nov., sp. nov., a Gram-negative bacterium that degrades the herbicide chloridazon. Int J Syst Bacteriol 35:26–39 [CrossRef]
    [Google Scholar]
  10. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275
    [Google Scholar]
  11. Maidak B. L., Cole J. R., Lilburn T. G. 7 other authors 2001; The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  12. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acids from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  13. Mulder E. G., Deinema M. H. 1992; The sheathed bacteria. In The Prokaryotes pp  2612–2624 vol 3 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. New York: Springer;
    [Google Scholar]
  14. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. 1994; fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48
    [Google Scholar]
  15. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  16. Smibert R. M., Krieg N. R. 1994 Phenotypic characterisation. In Methods for General and Molecular Bacteriology Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Spanevello M., Yamamoto H., Patel B. K. C. 2002; Thermaerobacter subterraneus sp. nov., a novel aerobic bacterium from the Great Artesian Basin of Australia, and emendation of the genus Thermaerobacter . Int J Syst Evol Microbiol 52:795–800 [CrossRef]
    [Google Scholar]
  18. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  19. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886
    [Google Scholar]
  20. Zeikus G. J., Hegge P. W., Anderson M. A. 1979; Thermoanaerobacterium brockii gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 122:41–48 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63138-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63138-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error