1887

Abstract

Three Gram-negative, non-motile, non-spore-forming, slightly halophilic rods (strains SW-110, SW-116 and SW-140) were isolated from sea water of a tidal flat of the Yellow Sea in Korea and subjected to a polyphasic taxonomic study. The three isolates did not produce bacteriochlorophyll and were characterized chemotaxonomically by having ubiquinone-10 as the predominant respiratory lipoquinone and C 7 and C 6 as the major fatty acids. The DNA G+C content of the three isolates was between 62·2 and 62·9 mol%. Strains SW-110, SW-116 and SW-140 showed no difference in their 16S rRNA gene sequences, and their mean level of DNA–DNA relatedness was 94·8 %. Phylogenetic analyses based on 16S rRNA gene sequences showed that the three strains form a distinct phylogenetic lineage within the cluster comprising species. Similarities between the 16S rRNA gene sequences of strains SW-110, SW-116 and SW-140 and the type strains of species ranged from 98·4 % (with ) to 97·7 % (with ). Levels of DNA–DNA relatedness between strains SW-110, SW-116 and SW-140 and the type strains of all recognized species were in the range 5·3–12·7 %. On the basis of polyphasic taxonomic data, strains SW-110, SW-116 and SW-140 were classified as a novel species, for which the name sp. nov. is proposed. The type strain is SW-110 (=KCCM 41818=JCM 12189).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63100-0
2004-11-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/6/ijs541981.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63100-0&mimeType=html&fmt=ahah

References

  1. Anzai, Y., Kim, H., Park, J.-Y., Wakabayashi, H. & Oyaizu, H. ( 2000; ). Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50, 1563–1589.[CrossRef]
    [Google Scholar]
  2. Bruns, A., Rohde, M. & Berthe-Corti, L. ( 2001; ). Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 51, 1997–2006.[CrossRef]
    [Google Scholar]
  3. Cowan, S. T. & Steel, K. J. ( 1965; ). Manual for the Identification of Medical Bacteria. London: Cambridge University Press.
  4. Denner, E. B. M., Vybiral, D., Koblížek, M., Kämpfer, P., Busse, H.-J. & Velimirov, B. ( 2002; ). Erythrobacter citreus sp. nov., a yellow-pigmented bacterium that lacks bacteriochlorophyll a, isolated from the western Mediterranean Sea. Int J Syst Evol Microbiol 52, 1655–1661.[CrossRef]
    [Google Scholar]
  5. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  6. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  7. Felsenstein, J. ( 1993; ). phylip: Phylogenetic Inference Package, version 3.5. Distributed by the author. Department of Genetics, University of Washington, Seattle, USA.
  8. Fuerst, J. A., Hawkins, J. A., Holmes, A., Sly, L. I., Moore, C. J. & Stackebrandt, E. ( 1993; ). Porphyrobacter neustonensis gen. nov., sp. nov., an aerobic bacteriochlorophyll-synthesizing budding bacterium from fresh water. Int J Syst Bacteriol 43, 125–134.[CrossRef]
    [Google Scholar]
  9. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  10. Kluge, A. G. & Farris, F. S. ( 1969; ). Quantitative phyletics and the evolution of anurans. Syst Zool 18, 1–32.[CrossRef]
    [Google Scholar]
  11. Komagata, K. & Suzuki, K. ( 1987; ). Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–203.
    [Google Scholar]
  12. Lanyi, B. ( 1987; ). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19, 1–67.
    [Google Scholar]
  13. Leifson, E. ( 1963; ). Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85, 1183–1184.
    [Google Scholar]
  14. Levring, T. ( 1946; ). Some culture experiments with Ulva and artificial seawater. K Fysiogr Sallsk Lund Forh 16, 45–56.
    [Google Scholar]
  15. Rainey, F. A., Silva, J., Nobre, M. F., Silva, M. T. & da Costa, M. S. ( 2003; ). Porphyrobacter cryptus sp. nov., a novel slightly thermophilic, aerobic, bacteriochlorophyll a-containing species. Int J Syst Evol Microbiol 53, 35–41.[CrossRef]
    [Google Scholar]
  16. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  17. Sasser, M. ( 1990; ). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. Newark, DE: MIDI Inc.
  18. Shiba, T. & Simidu, U. ( 1982; ). Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int J Syst Bacteriol 32, 211–217.[CrossRef]
    [Google Scholar]
  19. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  20. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  21. Vybiral, D., Denner, E. B. M., Haller, C. M., Busse, H.-J., Witte, A., Höfle, M. G. & Velimirov, B. ( 1999; ). Polyphasic classification of 0·2 μm filterable bacteria from the Western Mediterranean Sea. Syst Appl Microbiol 22, 635–646.[CrossRef]
    [Google Scholar]
  22. Wayne, L. G., Brenner, D. J., Colwell, R. R. & 9 other authors ( 1987; ). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  23. Yoon, J.-H., Kim, H., Kim, S.-B., Kim, H.-J., Kim, W. Y., Lee, S. T., Goodfellow, M. & Park, Y.-H. ( 1996; ). Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 46, 502–505.[CrossRef]
    [Google Scholar]
  24. Yoon, J.-H., Lee, S. T. & Park, Y.-H. ( 1998; ). Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 48, 187–194.[CrossRef]
    [Google Scholar]
  25. Yoon, J.-H., Kim, H., Kim, I.-G., Kang, K. H. & Park, Y.-H. ( 2003; ). Erythrobacter flavus sp. nov., a slight halophile from the East Sea in Korea. Int J Syst Evol Microbiol 53, 1169–1174.[CrossRef]
    [Google Scholar]
  26. Yurkov, V., Stackebrandt, E., Holmes, A. & 7 other authors ( 1994; ). Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 44, 427–434.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63100-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63100-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error