1887

Abstract

A Gram-positive, aerobic, neutrophilic and rod-shaped bacterium, strain Shh49, was isolated from a deep-sea sediment sample collected from the East Pacific polymetallic nodule region. The strain was able to grow within a temperature range of 4–35 °C and tolerated up to 7.5 % (w/v) NaCl. Strain Shh49 was characterized chemotaxonomically by having MK-12 and MK-13 as predominant isoprenoid quinones, anteiso-C, iso-C, iso-C and anteiso-C as major fatty acids and ornithine as cell-wall diamino acid. The genomic DNA G+C content was 66.8 mol%. On the basis of 16S rRNA gene sequence similarities, the closest phylogenetic neighbours were the type strains of (98.3 %) and (98.0 %), but strain Shh49 could be clearly distinguished from its phylogenetic relatives with reference to a broad range of physiological and biochemical markers. DNA–DNA relatedness of strain Shh49 with DSM 13468 and DSM 8606 was 56 and 31 %, respectively. On the basis of phenotypic and genotypic data presented in this study, strain Shh49 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is Shh49 (=CGMCC 1.6777 =JCM 14840).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.2008/000455-0
2008-12-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/12/2930.html?itemId=/content/journal/ijsem/10.1099/ijs.0.2008/000455-0&mimeType=html&fmt=ahah

References

  1. Behrendt, U., Ulrich, A. & Schumann, P. ( 2001; ). Description of Microbacterium foliorum sp. nov. and Microbacterium phyllosphaerae sp. nov., isolated from the phyllosphere of grasses and the surface litter after mulching the sward, and reclassification of Aureobacterium resistens (Funke et al. 1998) as Microbacterium resistens comb. nov. Int J Syst Evol Microbiol 51, 1267–1276.
    [Google Scholar]
  2. Chun, J., Lee, J. H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y. W. ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57, 2259–2261.[CrossRef]
    [Google Scholar]
  3. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  4. Euzéby, J. P. ( 1997; ). List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47, 590–592. http://www.bacterio.cict.fr [CrossRef]
    [Google Scholar]
  5. Evtushenko, L. I. & Takeuchi, M. ( 2006; ). The family Microbacteriaceae. In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn, vol. 3, pp. 1020–1098. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer & E. Stackebrandt. New York: Springer.
  6. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  7. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  8. Kawamoto, I., Oka, T. & Nara, T. ( 1981; ). Cell wall composition of Micromonospora olivoasterospora, Micromonospora sagamiensis, and related organisms. J Bacteriol 146, 527–534.
    [Google Scholar]
  9. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  10. Komagata, K. & Suzuki, K. ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207.
    [Google Scholar]
  11. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  12. Kuykendall, L. D., Roy, M. A., O'Neill, J. J. & Devine, T. E. ( 1988; ). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38, 358–361.[CrossRef]
    [Google Scholar]
  13. Laffineur, K., Avesani, V., Cornu, G., Charlier, J., Janssens, M., Wauters, G. & Delmee, M. ( 2003; ). Bacteremia due to a novel Microbacterium species in a patient with leukemia and description of Microbacterium paraoxydans sp. nov. J Clin Microbiol 41, 2242–2246.[CrossRef]
    [Google Scholar]
  14. Leifson, E. ( 1963; ). Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85, 1183–1184.
    [Google Scholar]
  15. Li, W.-J., Chen, H.-H., Kim, C.-J., Park, D.-J., Tang, S.-K., Lee, J.-C., Xu, L.-H. & Jiang, C.-L. ( 2005; ). Microbacterium halotolerans sp. nov., isolated from a saline soil in the west of China. Int J Syst Evol Microbiol 55, 67–70.[CrossRef]
    [Google Scholar]
  16. Liu, C. & Shao, Z. ( 2005; ). Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 55, 1181–1186.[CrossRef]
    [Google Scholar]
  17. Liu, J., Nakayama, T., Hemmi, H., Asano, Y., Tsuruoka, N., Shimomura, K., Nishijima, M. & Nishino, T. ( 2005; ). Microbacterium natoriense sp. nov., a novel d-aminoacylase-producing bacterium isolated from soil in Natori, Japan. Int J Syst Evol Microbiol 55, 661–665.[CrossRef]
    [Google Scholar]
  18. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  19. Mata, J. A., Martinez-Canovas, J., Quesada, E. & Bejar, V. ( 2002; ). A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25, 360–375.[CrossRef]
    [Google Scholar]
  20. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  21. Schippers, A., Bosecker, K., Spröer, C. & Schumann, P. ( 2005; ). Microbacterium oleivorans sp. nov. and Microbacterium hydrocarbonoxydans sp. nov., novel crude-oil-degrading Gram-positive bacteria. Int J Syst Evol Microbiol 55, 655–660.[CrossRef]
    [Google Scholar]
  22. Schumann, P., Rainey, F. A., Burghardt, J., Stackebrandt, E. & Weiss, N. ( 1999; ). Reclassification of Brevibacterium oxydans (Chatelain and Second 1966) as Microbacterium oxydans comb. nov. Int J Syst Bacteriol 49, 175–177.[CrossRef]
    [Google Scholar]
  23. Shivaji, S., Bhadra, B., Rao, R. S., Chaturvedi, P., Pindi, P. K. & Raghukumar, C. ( 2007; ). Microbacterium indicum sp. nov., isolated from a deep-sea sediment sample from the Chagos Trench, Indian Ocean. Int J Syst Evol Microbiol 57, 1819–1822.[CrossRef]
    [Google Scholar]
  24. Takeuchi, M. & Hatano, K. ( 1998a; ). Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium. Int J Syst Bacteriol 48, 739–747.[CrossRef]
    [Google Scholar]
  25. Takeuchi, M. & Hatano, K. ( 1998b; ). Proposal of six new species in the genus Microbacterium and transfer of Flavobacterium marinotypicum ZoBell and Upham to the genus Microbacterium as Microbacterium maritypicum comb. nov. Int J Syst Bacteriol 48, 973–982.[CrossRef]
    [Google Scholar]
  26. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  27. Xu, X.-W., Wu, Y.-H., Zhou, Z., Wang, C.-S., Zhou, Y.-G., Zhang, H.-B., Wang, Y. & Wu, M. ( 2007; ). Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 57, 1619–1624.[CrossRef]
    [Google Scholar]
  28. Xu, X.-W., Wu, Y.-H., Wang, C.-S., Yang, J.-Y., Oren, A. & Wu, M. ( 2008; ). Marinobacter pelagius sp. nov., a moderately halophilic bacterium. Int J Syst Evol Microbiol 58, 637–640.[CrossRef]
    [Google Scholar]
  29. Yokota, A., Takeuchi, M., Sakane, T. & Weiss, N. ( 1993; ). Proposal of six new species in the genus Aureobacterium and transfer of Flavobacterium esteraromaticum Omelianski to the genus Aureobacterium as Aureobacterium esteraromaticum comb. nov. Int J Syst Bacteriol 43, 555–564.[CrossRef]
    [Google Scholar]
  30. ZoBell, C. E. ( 1941; ). Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 4, 42–75.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.2008/000455-0
Loading
/content/journal/ijsem/10.1099/ijs.0.2008/000455-0
Loading

Data & Media loading...

Supplements

vol. , part 12, pp. 2930 - 2934

Extended neighbour-joining phylogenetic tree based on 16S rRNA gene sequences from all species of the genus .

Phenotypic characteristics that differentiate strain Shh49 from its closest phylogenetic neighbours.

Fatty acid compositions of strains.

[PDF file for Supplementary Figure and Tables](35 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error