1887

Abstract

A novel, Gram-stain-negative, non-motile, rod-shaped yellow bacterium, designated VBW088 was isolated from a shallow water hydrothermal vent in Espalamaca in the Azores. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain VBW088 clustered with three type strains of species of the genus and exhibited a sequence similarity of 97.3 % with RSSK-12. However, strain VBW088 and RSSK-12 exhibited low DNA–DNA relatedness (12.7±3.5 %). Strain VBW088 was positive for catalase and oxidase. Growth occurred at 10–37 °C, with the optimum at 30 °C, and at pH 6.0–8.0 (optimum pH 6.0) and in up to 5 % (w/v) NaCl with optimum growth at 1–2 % (w/v) NaCl. The major fatty acids (>10 %) were iso-C (33.5 %) and iso-C 3-OH (32.0 %). The polar lipids detected in strain VBW088 consisted of phosphatidylethanolamine, one unidentified aminolipid and three unidentified phospholipids. The DNA G+C content of strain VBW088 was 36.7 mol%. On the basis of phylogenetic inference, DNA–DNA relatedness, chemotaxonomic analysis and physiological data, the isolate represents a novel species of the genus , for which the name sp. nov. is proposed, with the type strain as VBW088 ( = KCTC 32420 = MCC 2354).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.070805-0
2015-02-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/2/692.html?itemId=/content/journal/ijsem/10.1099/ijs.0.070805-0&mimeType=html&fmt=ahah

References

  1. Asker D., Beppu T., Ueda K.. ( 2007;). Zeaxanthinibacter enoshimensis gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae, isolated from seawater off Enoshima Island, Japan. . Int J Syst Evol Microbiol 57:, 837–843. [CrossRef][PubMed]
    [Google Scholar]
  2. Bernardet J. F., Nakagawa Y., Holmes B..Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef][PubMed]
    [Google Scholar]
  3. Cerny G.. ( 1978;). Studies on aminopeptidase for the distinction of Gram-negative from Gram-positive bacteria. . Eur J Appl Microbiol Biotechnol 5:, 113–122. [CrossRef]
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  5. Farmer III J. J., Hickman-Brenner F. W.. ( 2006;). The genera Vibrio and Photobacterium. . In The Prokaryotes: a Handbook on the Biology of Bacteria, , 3rd edn., pp 508–563. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E... New York:: Springer;. [CrossRef]
    [Google Scholar]
  6. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–789. [CrossRef]
    [Google Scholar]
  8. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  9. Kämpfer P., Buczolits S., Albrecht A., Busse H.-J., Stackebrandt E.. ( 2003;). Towards a standardized format for the description of a novel species (of an established genus): Ochrobactrum gallinifaecis sp. nov.. Int J Syst Evol Microbiol 53:, 893–896. [CrossRef][PubMed]
    [Google Scholar]
  10. Khandeparker R., Verma P., Meena R. M., Deobagkar D. D.. ( 2011;). Phylogenetic diversity of carbohydrate degrading culturable bacteria from Mandovi and Zuari estuaries, Goa, west coast of India. . Estuar Coast Shelf Sci 95:, 359–366. [CrossRef]
    [Google Scholar]
  11. Kim B. S., Kim O. S., Moon E. Y., Chun J.. ( 2010;). Vitellibacter aestuarii sp. nov., isolated from tidal-flat sediment, and an emended description of the genus Vitellibacter. . Int J Syst Evol Microbiol 60:, 1989–1992. [CrossRef][PubMed]
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  13. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematic, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... New York:: Wiley;.
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  15. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  16. Nedashkovskaya O. I., Suzuki M., Vysotskii M. V., Mikhailov V. V.. ( 2003;). Vitellibacter vladivostokensis gen. nov., sp. nov., a new member of the phylum Cytophaga-Flavobacterium-Bacteroides. . Int J Syst Evol Microbiol 53:, 1281–1286. [CrossRef][PubMed]
    [Google Scholar]
  17. Park S., Lee K. C., Bae K. S., Yoon J. H.. ( 2014;). Vitellibacter soesokkakensis sp. nov., isolated from the junction between the ocean and a freshwater spring and emended description of the genus Vitellibacter. . Int J Syst Evol Microbiol 64:, 588–593. [CrossRef][PubMed]
    [Google Scholar]
  18. Reichenbach H.. ( 1992;). The order Cytophagales. . In The Prokaryotes, , 2nd edn., vol. 4, pp. 3631–3675. Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K-H... New York:: Springer;. [CrossRef]
    [Google Scholar]
  19. Reichenbach H., Kohl W., Böttger-Vetter A., Achenbach H.. ( 1980;). Flexirubin-type pigments in Flavobacterium. . Arch Mirobiol 126:, 291–293.
    [Google Scholar]
  20. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  21. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc;.
  22. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  23. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  24. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal_w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.070805-0
Loading
/content/journal/ijsem/10.1099/ijs.0.070805-0
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error