1887

Abstract

A Gram-staining-negative, strictly aerobic and short rod-shaped bacterium, designated strain S3B03, was isolated from the sediment of the northern Okinawa Trough. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S3B03 belonged to the genus (family ) and showed the highest sequence similarity with KCTC 23883 (96.16 %) and 92.99–95.90 % 16S rRNA gene sequence similarity to other members of the genus . Optimal growth occurred in the presence of 2–5 % (w/v) NaCl at pH 7.0–8.0 and 28–32 °C. Ubiquinone-10 (Q-10) was the predominant respiratory quinone. The major fatty acids (>10 % of the total fatty acids) were Cω7 and/or Cω6. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine and two unidentified polar lipids. The DNA G+C content of strain S3B03 was 57.6 mol%. On the basis of polyphasic analysis, strain S3B03 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is S3B03 ( = JCM 30120 = DSM 28715 = MCCC 1K00257).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.070680-0
2015-02-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/2/686.html?itemId=/content/journal/ijsem/10.1099/ijs.0.070680-0&mimeType=html&fmt=ahah

References

  1. Beveridge T., Lawrence J., Murray R.. ( 2007;). Sampling and staining for light microscopy. . In Methods for General and Molecular Microbiology, , 3rd edn., pp. 19–33. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  2. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  3. Hosoya S., Yokota A.. ( 2007;). Loktanella atrilutea sp. nov., isolated from seawater in Japan. . Int J Syst Evol Microbiol 57:, 1966–1969. [CrossRef][PubMed]
    [Google Scholar]
  4. Ivanova E. P., Zhukova N. V., Lysenko A. M., Gorshkova N. M., Sergeev A. F., Mikhailov V. V., Bowman J. P.. ( 2005;). Loktanella agnita sp. nov. and Loktanella rosea sp. nov., from the north-west Pacific Ocean. . Int J Syst Evol Microbiol 55:, 2203–2207. [CrossRef][PubMed]
    [Google Scholar]
  5. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  6. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  7. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  8. Lau S. C. K., Tsoi M. M. Y., Li X., Plakhotnikova I., Wu M., Wong P.-K., Qian P.-Y.. ( 2004;). Loktanella hongkongensis sp. nov., a novel member of the α-Proteobacteria originating from marine biofilms in Hong Kong waters. . Int J Syst Evol Microbiol 54:, 2281–2284. [CrossRef][PubMed]
    [Google Scholar]
  9. Lee S. D.. ( 2012;). Loktanella tamlensis sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 62:, 586–590. [CrossRef][PubMed]
    [Google Scholar]
  10. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  11. Minnikin D., O’Donnell A., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  12. Montero-Calasanz M. del C., Göker M., Rohde M., Spröer C., Schumann P., Busse H.-J., Schmid M., Tindall B. J., Klenk H.-P., Camacho M.. ( 2013;). Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. . Int J Syst Evol Microbiol 63:, 4386–4395. [CrossRef][PubMed]
    [Google Scholar]
  13. Moon Y. G., Seo S. H., Lee S. D., Heo M. S.. ( 2010;). Loktanella pyoseonensis sp. nov., isolated from beach sand, and emended description of the genus Loktanella. . Int J Syst Evol Microbiol 60:, 785–789. [CrossRef][PubMed]
    [Google Scholar]
  14. Moore E. R. B., Arnscheidt A., Krüger A., Strömpl C., Mau M.. ( 1999;). Simplified protocols for the preparation of genomic DNA from bacterial cultures. . In Molecular Microbial Ecology Manual 1.6.1, pp. 1–15. Edited by Akkermans A. D. L., van Elsas J. D., de Bruijn F. J... Dordrecht:: Kluwer;.
    [Google Scholar]
  15. Ostle A. G., Holt J. G.. ( 1982;). Nile blue A as a fluorescent stain for poly-β-hydroxybutyrate. . Appl Environ Microbiol 44:, 238–241.[PubMed]
    [Google Scholar]
  16. Park S., Jung Y.-T., Yoon J.-H.. ( 2013a;). Loktanella sediminilitoris sp. nov., isolated from tidal flat sediment. . Int J Syst Evol Microbiol 63:, 4118–4123. [CrossRef][PubMed]
    [Google Scholar]
  17. Park S., Lee J.-S., Lee K.-C., Yoon J.-H.. ( 2013b;). Loktanella soesokkakensis sp. nov., isolated from the junction between the North Pacific Ocean and a freshwater spring. . Antonie van Leeuwenhoek 104:, 397–404. [CrossRef][PubMed]
    [Google Scholar]
  18. Raina J.-B., Tapiolas D., Willis B. L., Bourne D. G.. ( 2009;). Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. . Appl Environ Microbiol 75:, 3492–3501. [CrossRef][PubMed]
    [Google Scholar]
  19. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc;.
  20. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . 44:, 846–849.
    [Google Scholar]
  21. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  22. Tanaka N., Romanenko L. A., Kurilenko V. V., Svetashev V. I., Kalinovskaya N. I., Mikhailov V. V.. ( 2014;). Loktanella maritima sp. nov. isolated from shallow marine sediments. . Int J Syst Evol Microbiol 64:, 2370–2375. [CrossRef][PubMed]
    [Google Scholar]
  23. Teather R. M., Wood P. J.. ( 1982;). Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. . Appl Environ Microbiol 43:, 777–780.[PubMed]
    [Google Scholar]
  24. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  25. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, , 3rd edn., pp. 330–393. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R... Washington, DC:: American Society for Microbiology;. [CrossRef]
    [Google Scholar]
  26. Tsubouchi T., Shimane Y., Mori K., Miyazaki M., Tame A., Uematsu K., Maruyama T., Hatada Y.. ( 2013;). Loktanella cinnabarina sp. nov., isolated from a deep subseafloor sediment, and emended description of the genus Loktanella. . Int J Syst Evol Microbiol 63:, 1390–1395. [CrossRef][PubMed]
    [Google Scholar]
  27. Van Trappen S., Mergaert J., Swings J.. ( 2004;). Loktanella salsilacus gen. nov., sp. nov., Loktanella fryxellensis sp. nov. and Loktanella vestfoldensis sp. nov., new members of the Rhodobacter group, isolated from microbial mats in Antarctic lakes. . Int J Syst Evol Microbiol 54:, 1263–1269. [CrossRef][PubMed]
    [Google Scholar]
  28. Weon H.-Y., Kim B.-Y., Yoo S.-H., Kim J.-S., Kwon S.-W., Go S.-J., Stackebrandt E.. ( 2006;). Loktanella koreensis sp. nov., isolated from sea sand in Korea. . Int J Syst Evol Microbiol 56:, 2199–2202. [CrossRef][PubMed]
    [Google Scholar]
  29. Xie C.-H., Yokota A.. ( 2003;). Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. . J Gen Appl Microbiol 49:, 345–349. [CrossRef][PubMed]
    [Google Scholar]
  30. Yoon J.-H., Kang S.-J., Lee S.-Y., Oh T.-K.. ( 2007;). Loktanella maricola sp. nov., isolated from seawater of the East Sea in Korea. . Int J Syst Evol Microbiol 57:, 1799–1802. [CrossRef][PubMed]
    [Google Scholar]
  31. Yoon J.-H., Jung Y.-T., Lee J.-S.. ( 2013;). Loktanella litorea sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 63:, 175–180. [CrossRef][PubMed]
    [Google Scholar]
  32. Yu T., Yin Q., Song X., Zhao R., Shi X., Zhang X.-H.. ( 2012;). Aquimarina longa sp. nov., isolated from seawater, and emended description of Aquimarina muelleri. . Int J Syst Evol Microbiol 63:, 1235–1240. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.070680-0
Loading
/content/journal/ijsem/10.1099/ijs.0.070680-0
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error