1887

Abstract

A Gram-stain-positive, rod-shaped and non-motile strain, designated PAMC 27367, was isolated from rainwater collected on the Bering Sea. Analysis of the 16S rRNA gene sequence of the strain showed an affiliation with the genus . Phylogenetic analyses revealed that strain PAMC 27367 formed a robust clade with the type strains of , and with 16S rRNA gene sequence similarities of 96.3 %, 95.8 % and 95.5 %, respectively. Cells of the strain grew optimally at 25 °C and at pH 6.5–7.0 in the presence of 0–2 % (w/v) sea salts. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside and three unknown phospholipids. The major cellular fatty acids (>10 %) were iso-C, Cω8 and 10-methyl C. Cell wall analysis showed that strain PAMC 27367 contained -diaminopimelic acid. The genomic DNA G+C content was 77.1 mol%. Based on the phylogenetic, chemotaxonomic and phenotypic data presented here, we propose a novel species with the name sp. nov., with PAMC 27367 ( = KCTC 29240 = JCM 19485) as the type strain.

Funding
This study was supported by the:
  • Korea Polar Research Institute (Award PE13410 and PE14080)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.070086-0
2015-02-01
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/2/465.html?itemId=/content/journal/ijsem/10.1099/ijs.0.070086-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. ( 1990 ). Basic local alignment search tool. . J Mol Biol 215, 403410. [View Article] [PubMed]
    [Google Scholar]
  2. Anzai Y., Kudo Y., Oyaizu H. ( 1997 ). The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. . Int J Syst Bacteriol 47, 249251. [View Article] [PubMed]
    [Google Scholar]
  3. Bruns A., Rohde M., Berthe-Corti L. ( 2001 ). Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. . Int J Syst Evol Microbiol 51, 19972006. [View Article] [PubMed]
    [Google Scholar]
  4. Bunch A. W. ( 1998 ). Biotransformation of nitriles by rhodococci. . Antonie van Leeuwenhoek 74, 8997. [View Article] [PubMed]
    [Google Scholar]
  5. Cappuccino J. G., Sherman N. ( 2002 ). Microbiology: a Laboratory Manual, , 6th edn.. Menlo Park, CA:: Benjamin/Cummings;.
    [Google Scholar]
  6. Cole J. R., Wang Q., Fish J. A., Chai B., McGarrell D. M., Sun Y., Brown C. T., Porras-Alfaro A., Kuske C. R., Tiedje J. M. ( 2014 ). Ribosomal Database Project: data and tools for high throughput rRNA analysis. . Nucleic Acids Res 42 (Database issue), D633D642. [View Article] [PubMed]
    [Google Scholar]
  7. Englen M. D., Kelley L. C. ( 2000 ). A rapid DNA isolation procedure for the identification of Campylobacter jejuni by the polymerase chain reaction. . Lett Appl Microbiol 31, 421426. [View Article] [PubMed]
    [Google Scholar]
  8. Felsenstein J. ( 1981 ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17, 368376. [View Article] [PubMed]
    [Google Scholar]
  9. Goodfellow M., Alderson G., Chun J. ( 1998 ). Rhodococcal systematics: problems and developments. . Antonie van Leeuwenhoek 74, 320. [View Article] [PubMed]
    [Google Scholar]
  10. Goodfellow M., Jones A. L., Maldonado L. A., Salanitro J. ( 2004 ). Rhodococcus aetherivorans sp. nov., a new species that contains methyl t-butyl ether-degrading actinomycetes. . Syst Appl Microbiol 27, 6165. [View Article] [PubMed]
    [Google Scholar]
  11. Gürtler V., Seviour R. J. ( 2010 ). Systematics of members of the genus Rhodococcus (Zopf 1891) emend. Goodfellow et al. 1998. . In Biology of Rhodococcus (Microbiology Monographs 16), pp. 128. Edited by Alvarez H. M. . Berlin:: Springer;. [View Article]
    [Google Scholar]
  12. Høvik Hansen G., Sørheim R. ( 1991 ). Improved method for phenotypical characterization of marine bacteria. . J Microbiol Methods 13, 231241. [View Article]
    [Google Scholar]
  13. Hwang C. Y., Cho B. C. ( 2008 ). Cohaesibacter gelatinilyticus gen. nov., sp. nov., a marine bacterium that forms a distinct branch in the order Rhizobiales, and proposal of Cohaesibacteraceae fam. nov.. Int J Syst Evol Microbiol 58, 267277. [View Article] [PubMed]
    [Google Scholar]
  14. Hwang C. Y., Kim M. H., Bae G. D., Zhang G. I., Kim Y. H., Cho B. C. ( 2009 ). Muricauda olearia sp. nov., isolated from crude-oil-contaminated seawater, and emended description of the genus Muricauda . . Int J Syst Evol Microbiol 59, 18561861. [View Article] [PubMed]
    [Google Scholar]
  15. Jones A. L., Goodfellow M. ( 2012 ). Genus IV. Rhodococcus (Zopf 1891) emend. Goodfellow, Alderson and Chun 1998a. In Bergey’s Manual of Systematic Bacteriology, 2nd edn, vol. 5, The Actinobacteria, part A. , pp. 437464. Edited by Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M. E., Suzuki K., Ludwig W., Whitman W. B. . New York:: Springer;.
    [Google Scholar]
  16. Jukes T. H., Cantor C. R. ( 1969 ). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21132. Edited by Munro H. N. . New York:: Academic Press;. [View Article]
    [Google Scholar]
  17. Kämpfer P., Dott W., Martin K., Glaeser S. P. ( 2014 ). Rhodococcus defluvii sp. nov., isolated from wastewater of a bioreactor and formal proposal to reclassify [Corynebacterium hoagii] and Rhodococcus equi as Rhodococcus hoagii comb. nov.. Int J Syst Evol Microbiol 64, 755761. [View Article] [PubMed]
    [Google Scholar]
  18. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. & other authors ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721. [View Article] [PubMed]
    [Google Scholar]
  19. Lane D. J. ( 1991 ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115175. Edited by Stackebrandt E., Goodfellow M. . Chichester:: Wiley;.
    [Google Scholar]
  20. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. ( 1984 ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2, 233241. [View Article]
    [Google Scholar]
  21. Rosselló-Mora R., Amann R. ( 2001 ). The species concept for prokaryotes. . FEMS Microbiol Rev 25, 3967. [View Article] [PubMed]
    [Google Scholar]
  22. Rzhetsky A., Nei M. ( 1992 ). A simple method for estimating and testing minimum-evolution trees. . Mol Biol Evol 9, 945967.
    [Google Scholar]
  23. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  24. Scott M. A., Graham B. S., Verrall R., Dixon R., Schaffner W., Tham K. T. ( 1995 ). Rhodococcus equi–an increasingly recognized opportunistic pathogen. Report of 12 cases and review of 65 cases in the literature. . Am J Clin Pathol 103, 649655.[PubMed]
    [Google Scholar]
  25. Smibert R. M., Krieg N. R. ( 1994 ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  26. Staneck J. L., Roberts G. D. ( 1974 ). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. . Appl Microbiol 28, 226231.[PubMed]
    [Google Scholar]
  27. Tamaoka J., Komagata K. ( 1984 ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25, 125128. [View Article]
    [Google Scholar]
  28. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. ( 2013 ). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30, 27252729. [View Article] [PubMed]
    [Google Scholar]
  29. Temmerman W., Vereecke D., Dreesen R., Van Montagu M., Holsters M., Goethals K. ( 2000 ). Leafy gall formation is controlled by fasR, an AraC-type regulatory gene in Rhodococcus fascians . . J Bacteriol 182, 58325840. [View Article] [PubMed]
    [Google Scholar]
  30. Warhurst A. M., Fewson C. A. ( 1994 ). Biotransformations catalyzed by the genus Rhodococcus . . Crit Rev Biotechnol 14, 2973. [View Article] [PubMed]
    [Google Scholar]
  31. Yoon J.-H., Cho Y.-G., Kang S.-S., Kim S. B., Lee S. T., Park Y.-H. ( 2000a ). Rhodococcus koreensis sp. nov., a 2,4-dinitrophenol-degrading bacterium. . Int J Syst Evol Microbiol 50, 11931201. [View Article] [PubMed]
    [Google Scholar]
  32. Yoon J.-H., Kang S.-S., Cho Y.-G., Lee S. T., Kho Y. H., Kim C.-J., Park Y.-H. ( 2000b ). Rhodococcus pyridinivorans sp. nov., a pyridine-degrading bacterium. . Int J Syst Evol Microbiol 50, 21732180. [View Article] [PubMed]
    [Google Scholar]
  33. Zopf W. ( 1891 ). Über Ausscheidung von Fettfarbstoffen (Lipochromen) seitens gewisser Spaltpilze. . Ber Deut Bot Ges 9, 2228.
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.070086-0
Loading
/content/journal/ijsem/10.1099/ijs.0.070086-0
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error