1887

Abstract

A Gram-stain-positive, rod-shaped and non-motile strain, designated PAMC 27367, was isolated from rainwater collected on the Bering Sea. Analysis of the 16S rRNA gene sequence of the strain showed an affiliation with the genus . Phylogenetic analyses revealed that strain PAMC 27367 formed a robust clade with the type strains of , and with 16S rRNA gene sequence similarities of 96.3 %, 95.8 % and 95.5 %, respectively. Cells of the strain grew optimally at 25 °C and at pH 6.5–7.0 in the presence of 0–2 % (w/v) sea salts. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside and three unknown phospholipids. The major cellular fatty acids (>10 %) were iso-C, Cω8 and 10-methyl C. Cell wall analysis showed that strain PAMC 27367 contained -diaminopimelic acid. The genomic DNA G+C content was 77.1 mol%. Based on the phylogenetic, chemotaxonomic and phenotypic data presented here, we propose a novel species with the name sp. nov., with PAMC 27367 ( = KCTC 29240 = JCM 19485) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.070086-0
2015-02-01
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/2/465.html?itemId=/content/journal/ijsem/10.1099/ijs.0.070086-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. . J Mol Biol 215:, 403–410. [CrossRef][PubMed]
    [Google Scholar]
  2. Anzai Y., Kudo Y., Oyaizu H.. ( 1997;). The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. . Int J Syst Bacteriol 47:, 249–251. [CrossRef][PubMed]
    [Google Scholar]
  3. Bruns A., Rohde M., Berthe-Corti L.. ( 2001;). Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. . Int J Syst Evol Microbiol 51:, 1997–2006. [CrossRef][PubMed]
    [Google Scholar]
  4. Bunch A. W.. ( 1998;). Biotransformation of nitriles by rhodococci. . Antonie van Leeuwenhoek 74:, 89–97. [CrossRef][PubMed]
    [Google Scholar]
  5. Cappuccino J. G., Sherman N.. ( 2002;). Microbiology: a Laboratory Manual, , 6th edn.. Menlo Park, CA:: Benjamin/Cummings;.
    [Google Scholar]
  6. Cole J. R., Wang Q., Fish J. A., Chai B., McGarrell D. M., Sun Y., Brown C. T., Porras-Alfaro A., Kuske C. R., Tiedje J. M.. ( 2014;). Ribosomal Database Project: data and tools for high throughput rRNA analysis. . Nucleic Acids Res 42: (Database issue), D633–D642. [CrossRef][PubMed]
    [Google Scholar]
  7. Englen M. D., Kelley L. C.. ( 2000;). A rapid DNA isolation procedure for the identification of Campylobacter jejuni by the polymerase chain reaction. . Lett Appl Microbiol 31:, 421–426. [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  9. Goodfellow M., Alderson G., Chun J.. ( 1998;). Rhodococcal systematics: problems and developments. . Antonie van Leeuwenhoek 74:, 3–20. [CrossRef][PubMed]
    [Google Scholar]
  10. Goodfellow M., Jones A. L., Maldonado L. A., Salanitro J.. ( 2004;). Rhodococcus aetherivorans sp. nov., a new species that contains methyl t-butyl ether-degrading actinomycetes. . Syst Appl Microbiol 27:, 61–65. [CrossRef][PubMed]
    [Google Scholar]
  11. Gürtler V., Seviour R. J.. ( 2010;). Systematics of members of the genus Rhodococcus (Zopf 1891) emend. Goodfellow et al. 1998. . In Biology of Rhodococcus (Microbiology Monographs 16), pp. 1–28. Edited by Alvarez H. M... Berlin:: Springer;. [CrossRef]
    [Google Scholar]
  12. Høvik Hansen G., Sørheim R.. ( 1991;). Improved method for phenotypical characterization of marine bacteria. . J Microbiol Methods 13:, 231–241. [CrossRef]
    [Google Scholar]
  13. Hwang C. Y., Cho B. C.. ( 2008;). Cohaesibacter gelatinilyticus gen. nov., sp. nov., a marine bacterium that forms a distinct branch in the order Rhizobiales, and proposal of Cohaesibacteraceae fam. nov.. Int J Syst Evol Microbiol 58:, 267–277. [CrossRef][PubMed]
    [Google Scholar]
  14. Hwang C. Y., Kim M. H., Bae G. D., Zhang G. I., Kim Y. H., Cho B. C.. ( 2009;). Muricauda olearia sp. nov., isolated from crude-oil-contaminated seawater, and emended description of the genus Muricauda. . Int J Syst Evol Microbiol 59:, 1856–1861. [CrossRef][PubMed]
    [Google Scholar]
  15. Jones A. L., Goodfellow M.. ( 2012;). Genus IV. Rhodococcus (Zopf 1891) emend. Goodfellow, Alderson and Chun 1998a. In Bergey’s Manual of Systematic Bacteriology, 2nd edn, vol. 5, The Actinobacteria, part A. , pp. 437–464. Edited by Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M. E., Suzuki K., Ludwig W., Whitman W. B... New York:: Springer;.
  16. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;. [CrossRef]
    [Google Scholar]
  17. Kämpfer P., Dott W., Martin K., Glaeser S. P.. ( 2014;). Rhodococcus defluvii sp. nov., isolated from wastewater of a bioreactor and formal proposal to reclassify [Corynebacterium hoagii] and Rhodococcus equi as Rhodococcus hoagii comb. nov.. Int J Syst Evol Microbiol 64:, 755–761. [CrossRef][PubMed]
    [Google Scholar]
  18. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  19. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  20. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  21. Rosselló-Mora R., Amann R.. ( 2001;). The species concept for prokaryotes. . FEMS Microbiol Rev 25:, 39–67. [CrossRef][PubMed]
    [Google Scholar]
  22. Rzhetsky A., Nei M.. ( 1992;). A simple method for estimating and testing minimum-evolution trees. . Mol Biol Evol 9:, 945–967.
    [Google Scholar]
  23. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  24. Scott M. A., Graham B. S., Verrall R., Dixon R., Schaffner W., Tham K. T.. ( 1995;). Rhodococcus equi–an increasingly recognized opportunistic pathogen. Report of 12 cases and review of 65 cases in the literature. . Am J Clin Pathol 103:, 649–655.[PubMed]
    [Google Scholar]
  25. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  26. Staneck J. L., Roberts G. D.. ( 1974;). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. . Appl Microbiol 28:, 226–231.[PubMed]
    [Google Scholar]
  27. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  28. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef][PubMed]
    [Google Scholar]
  29. Temmerman W., Vereecke D., Dreesen R., Van Montagu M., Holsters M., Goethals K.. ( 2000;). Leafy gall formation is controlled by fasR, an AraC-type regulatory gene in Rhodococcus fascians. . J Bacteriol 182:, 5832–5840. [CrossRef][PubMed]
    [Google Scholar]
  30. Warhurst A. M., Fewson C. A.. ( 1994;). Biotransformations catalyzed by the genus Rhodococcus. . Crit Rev Biotechnol 14:, 29–73. [CrossRef][PubMed]
    [Google Scholar]
  31. Yoon J.-H., Cho Y.-G., Kang S.-S., Kim S. B., Lee S. T., Park Y.-H.. ( 2000a;). Rhodococcus koreensis sp. nov., a 2,4-dinitrophenol-degrading bacterium. . Int J Syst Evol Microbiol 50:, 1193–1201. [CrossRef][PubMed]
    [Google Scholar]
  32. Yoon J.-H., Kang S.-S., Cho Y.-G., Lee S. T., Kho Y. H., Kim C.-J., Park Y.-H.. ( 2000b;). Rhodococcus pyridinivorans sp. nov., a pyridine-degrading bacterium. . Int J Syst Evol Microbiol 50:, 2173–2180. [CrossRef][PubMed]
    [Google Scholar]
  33. Zopf W.. ( 1891;). Über Ausscheidung von Fettfarbstoffen (Lipochromen) seitens gewisser Spaltpilze. . Ber Deut Bot Ges 9:, 22–28.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.070086-0
Loading
/content/journal/ijsem/10.1099/ijs.0.070086-0
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error