1887

Abstract

During the course of screening bacterial isolates as sources of as-yet unknown bioactive compounds with pharmaceutical applications, a chemo-organotrophic, Gram-negative bacterium was isolated from a soil sample taken from the Tejeda, Almijara and Alhama Natural Park, Granada, Spain. Strain F-278,770 was oxidase- and catalase-positive, aerobic, with a respiratory type of metabolism with oxygen as the terminal electron acceptor, non-spore-forming and motile by one polar flagellum, although some cells had two polar flagella. Phylogenetic analysis of the 16S rRNA, , and genes revealed that strain F-278,770 belongs to the subgroup ( lineage), with , , and as its closest relatives. Chemotaxonomic traits such as polar lipid and fatty acid compositions and G+C content of genomic DNA corroborated the placement of strain F-278,770 in the genus . DNA–DNA hybridization assays and phenotypic traits confirmed that this strain represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is F-278,770 ( = DSM 28040 = LMG 27940).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.069260-0
2015-02-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/2/625.html?itemId=/content/journal/ijsem/10.1099/ijs.0.069260-0&mimeType=html&fmt=ahah

References

  1. Ait Tayeb L. A. , Ageron E. , Grimont F. , Grimont P. A. . ( 2005; ). Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. . Res Microbiol 156:, 763–773. [CrossRef] [PubMed]
    [Google Scholar]
  2. Cámara B. , Strömpl C. , Verbarg S. , Spröer C. , Pieper D. H. , Tindall B. J. . ( 2007; ). Pseudomonas reinekei sp. nov., Pseudomonas moorei sp. nov. and Pseudomonas mohnii sp. nov., novel species capable of degrading chlorosalicylates or isopimaric acid. . Int J Syst Evol Microbiol 57:, 923–931. [CrossRef] [PubMed]
    [Google Scholar]
  3. Davis K. E. R. , Joseph S. J. , Janssen P. H. . ( 2005; ). Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. . Appl Environ Microbiol 71:, 826–834. [CrossRef] [PubMed]
    [Google Scholar]
  4. Heimbrook M. E. , Wang W. L. , Campbell G. . ( 1989; ). Staining bacterial flagella easily. . J Clin Microbiol 27:, 2612–2615.[PubMed]
    [Google Scholar]
  5. Joseph S. J. , Hugenholtz P. , Sangwan P. , Osborne C. A. , Janssen P. H. . ( 2003; ). Laboratory cultivation of widespread and previously uncultured soil bacteria. . Appl Environ Microbiol 69:, 7210–7215. [CrossRef] [PubMed]
    [Google Scholar]
  6. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. . & other authors ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  7. Kim M. , Oh H. S. , Park S. C. , Chun J. . ( 2014; ). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. . Int J Syst Evol Microbiol 64:, 346–351. [CrossRef] [PubMed]
    [Google Scholar]
  8. King E. O. , Ward M. K. , Raney D. E. . ( 1954; ). Two simple media for the demonstration of pyocyanin and fluorescin. . J Lab Clin Med 44:, 301–307.[PubMed]
    [Google Scholar]
  9. Kwon S. W. , Kim J. S. , Park I. C. , Yoon S. H. , Park D. H. , Lim C. K. , Go S. J. . ( 2003; ). Pseudomonas koreensis sp. nov., Pseudomonas umsongensis sp. nov. and Pseudomonas jinjuensis sp. nov., novel species from farm soils in Korea. . Int J Syst Evol Microbiol 53:, 21–27.[CrossRef]
    [Google Scholar]
  10. Lin S. Y. , Hameed A. , Liu Y. C. , Hsu Y. H. , Lai W. A. , Chen W. M. , Shen F. T. , Young C. C. . ( 2013a; ). Pseudomonas sagittaria sp. nov., a siderophore-producing bacterium isolated from oil-contaminated soil. . Int J Syst Evol Microbiol 63:, 2410–2417. [CrossRef] [PubMed]
    [Google Scholar]
  11. Lin S. Y. , Hameed A. , Liu Y. C. , Hsu Y. H. , Lai W. A. , Young C. C. . ( 2013b; ). Pseudomonas formosensis sp. nov., a gamma-proteobacteria isolated from food-waste compost in Taiwan. . Int J Syst Evol Microbiol 63:, 3168–3174. [CrossRef] [PubMed]
    [Google Scholar]
  12. Liu Y. C. , Young L. S. , Lin S. Y. , Hameed A. , Hsu Y. H. , Lai W. A. , Shen F. T. , Young C. C. . ( 2013; ). Pseudomonas guguanensis sp. nov., a gammaproteobacterium isolated from a hot spring. . Int J Syst Evol Microbiol 63:, 4591–4598. [CrossRef] [PubMed]
    [Google Scholar]
  13. López J. R. , Diéguez A. L. , Doce A. , De la Roca E. , De la Herran R. , Navas J. I. , Toranzo A. E. , Romalde J. L. . ( 2012; ). Pseudomonas baetica sp. nov., a fish pathogen isolated from wedge sole, Dicologlossa cuneata (Moreau). . Int J Syst Evol Microbiol 62:, 874–882. [CrossRef] [PubMed]
    [Google Scholar]
  14. Martin D. P. , Lemey P. , Lott M. , Moulton V. , Posada D. , Lefeuvre P. . ( 2010; ). RDP3: a flexible and fast computer program for analyzing recombination. . Bioinformatics 26:, 2462–2463. [CrossRef] [PubMed]
    [Google Scholar]
  15. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  16. Moore E. R. B. , Tindall B. J. , Martins Dos Santos V. A. P. , Pieper D. H. , Ramos J.-L. , Palleroni N. J. . ( 2006; ). Nonmedical: Pseudomonas . . In The Prokaryotes, , 3rd edn., vol. 6, pp. 646–703. Edited by Dworkin M. , Falkow S. , Rosenberg E. , Schleifer K. H. , Stackebrandt E. . . New York:: Springer;. [CrossRef]
    [Google Scholar]
  17. Mulet M. , Lalucat J. , García-Valdés E. . ( 2010; ). DNA sequence-based analysis of the Pseudomonas species. . Environ Microbiol 12:, 1513–1530.[PubMed]
    [Google Scholar]
  18. Mulet M. , Gomila M. , Scotta C. , Sánchez D. , Lalucat J. , García-Valdés E. . ( 2012; ). Concordance between whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry and multilocus sequence analysis approaches in species discrimination within the genus Pseudomonas . . Syst Appl Microbiol 35:, 455–464. [CrossRef] [PubMed]
    [Google Scholar]
  19. Oyaizu H. , Komagata K. . ( 1983; ). Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. . J Gen Appl Microbiol 29:, 17–40. [CrossRef]
    [Google Scholar]
  20. Pascual J. , Macián M. C. , Arahal D. R. , Garay E. , Pujalte M. J. . ( 2010; ). Multilocus sequence analysis of the central clade of the genus Vibrio by using the 16S rRNA, recA, pyrH, rpoD, gyrB, rctB and toxR genes. . Int J Syst Evol Microbiol 60:, 154–165. [CrossRef] [PubMed]
    [Google Scholar]
  21. Pascual J. , Lucena T. , Ruvira M. A. , Giordano A. , Gambacorta A. , Garay E. , Arahal D. R. , Pujalte M. J. , Macián M. C. . ( 2012; ). Pseudomonas litoralis sp. nov., isolated from Mediterranean seawater. . Int J Syst Evol Microbiol 62:, 438–444. [CrossRef] [PubMed]
    [Google Scholar]
  22. Powers E. M. . ( 1995; ). Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. . Appl Environ Microbiol 61:, 3756–3758.[PubMed]
    [Google Scholar]
  23. Ramírez-Bahena M. H. , Cuesta M. J. , Flores-Félix J. D. , Mulas R. , Rivas R. , Castro-Pinto J. , Brañas J. , Mulas D. , González-Andrés F. . & other authors ( 2014; ). Pseudomonas helmanticensis sp. nov., isolated from forest soil. . Int J Syst Evol Microbiol 64:, 2338–2345. [CrossRef] [PubMed]
    [Google Scholar]
  24. Ramos E. , Ramírez-Bahena M. H. , Valverde A. , Velázquez E. , Zúñiga D. , Velezmoro C. , Peix A. . ( 2013; ). Pseudomonas punonensis sp. nov., isolated from straw. . Int J Syst Evol Microbiol 63:, 1834–1839. [CrossRef] [PubMed]
    [Google Scholar]
  25. Sait M. , Hugenholtz P. , Janssen P. H. . ( 2002; ). Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. . Environ Microbiol 4:, 654–666. [CrossRef] [PubMed]
    [Google Scholar]
  26. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI, Inc;.
  27. Schaeffer A. B. , Fulton M. D. . ( 1933; ). A simplified method of staining endospores. . Science 77:, 194. [CrossRef] [PubMed]
    [Google Scholar]
  28. Tamaoka J. , Komagata K. . ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  29. Tao Y. , Zhou Y. , He X. , Hu X. , Li D. . ( 2014; ). Pseudomonas chengduensis sp. nov., isolated from landfill leachate. . Int J Syst Evol Microbiol 64:, 95–100.[PubMed] [CrossRef]
    [Google Scholar]
  30. Toro M. , Ramírez-Bahena M. H. , Cuesta M. J. , Velázquez E. , Peix A. . ( 2013; ). Pseudomonas guariconensis sp. nov., isolated from rhizospheric soil. . Int J Syst Evol Microbiol 63:, 4413–4420. [CrossRef] [PubMed]
    [Google Scholar]
  31. Tvrzová L. , Schumann P. , Spröer C. , Sedlácek I. , Pácová Z. , Šedo O. , Zdráhal Z. , Steffen M. , Lang E. . ( 2006; ). Pseudomonas moraviensis sp. nov. and Pseudomonas vranovensis sp. nov., soil bacteria isolated on nitroaromatic compounds, and emended description of Pseudomonas asplenii . . Int J Syst Evol Microbiol 56:, 2657–2663. [CrossRef] [PubMed]
    [Google Scholar]
  32. Urdiain M. , López-López A. , Gonzalo C. , Busse H.-J. , Langer S. , Kämpfer P. , Rosselló-Móra R. . ( 2008; ). Reclassification of Rhodobium marinum and Rhodobium pfennigii as Afifella marina gen. nov. comb. nov. and Afifella pfennigii comb. nov., a new genus of photoheterotrophic Alphaproteobacteria and emended descriptions of Rhodobium, Rhodobium orientis and Rhodobium gokarnense . . Syst Appl Microbiol 31:, 339–351. [CrossRef] [PubMed]
    [Google Scholar]
  33. Vancanneyt M. , Witt S. , Abraham W.-R. , Kersters K. , Fredrickson H. L. . ( 1996; ). Fatty acid content in whole-cell hydrolysates and phospholipid fractions of pseudomonads: a taxonomic evaluation. . Syst Appl Microbiol 19:, 528–540. [CrossRef]
    [Google Scholar]
  34. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. C. , Murray R. G. . & other authors ( 1987; ). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  35. Weisburg W. G. , Barns S. M. , Pelletier D. A. , Lane D. J. . ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  36. Xie F. , Ma H. , Quan S. , Liu D. , Chen G. , Chao Y. , Qian S. . ( 2014; ). Pseudomonas kunmingensis sp. nov., an exopolysaccharide-producing bacterium isolated from a phosphate mine. . Int J Syst Evol Microbiol 64:, 559–564. [CrossRef] [PubMed]
    [Google Scholar]
  37. Yang G. , Han L. , Wen J. , Zhou S. . ( 2013; ). Pseudomonas guangdongensis sp. nov., isolated from an electroactive biofilm, and emended description of the genus Pseudomonas Migula 1894. . Int J Syst Evol Microbiol 63:, 4599–4605. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.069260-0
Loading
/content/journal/ijsem/10.1099/ijs.0.069260-0
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error