1887

Abstract

A floc-forming, Gram-stain-negative, petroleum hydrocarbon-degrading bacterial strain, designated Buc, was isolated from a petroleum hydrocarbon-contaminated site in Hungary. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Buc formed a distinct phyletic lineage within the genus . Its closest relative was found to be EMB43 (97.2 % 16S rRNA gene sequence similarity) followed by A-7 (95.9 %), ATCC 19544 (95.5 %) and DhA-35 (95.4 %). The level of DNA–DNA relatedness between strain Buc and EMB43 was 31.6 %. Cells of strain Buc are facultatively aerobic, rod-shaped, and motile by means of a polar flagellum. The strain grew at temperatures of 5–35 °C (optimum 25–28 °C), and at pH 6.0–9.0 (optimum 6.5–7.5). The predominant fatty acids were C, C 3-OH, C and summed feature 3 (Cω7 and/or iso-C 2-OH). The major respiratory quinone was ubiquinone-8 (Q-8) and the predominant polar lipid was phosphatidylethanolamine. The genomic DNA G+C content was 63.2 mol%. On the basis of the chemotaxonomic, molecular and phenotypic data, isolate Buc is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is Buc ( = DSM 28387 = NCAIM B 02570).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.068486-0
2015-01-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/1/274.html?itemId=/content/journal/ijsem/10.1099/ijs.0.068486-0&mimeType=html&fmt=ahah

References

  1. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  2. Claus D.. ( 1992;). A standardized Gram staining procedure. . World J Microbiol Biotechnol 8:, 451–452. [CrossRef][PubMed]
    [Google Scholar]
  3. Cowan S. T., Steel K. J.. ( 1974;). Manual of Identification of Medical Bacteria. Cambridge:: University Press;.
    [Google Scholar]
  4. Crabtree K., McCoy E.. ( 1967;). Zoogloea ramigera Itzigsohn, identification and description. . Int J Syst Bacteriol 17:, 1–10. [CrossRef]
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  6. Dugan P. R., Stoner D. L., Pickrum H. M.. ( 1992;). The genus Zoogloea. . In The Prokaryotes, , 2nd edn., pp. 3952–3964. Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H... New York:: Springer;. [CrossRef]
    [Google Scholar]
  7. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  8. Hugh R., Leifson E.. ( 1953;). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. . J Bacteriol 66:, 24–26.[PubMed]
    [Google Scholar]
  9. Huß V. A. R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  10. Jechalke S., Franchini A. G., Bastida F., Bombach P., Rosell M., Seifert J., von Bergen M., Vogt C., Richnow H. H.. ( 2013;). Analysis of structure, function, and activity of a benzene-degrading microbial community. . FEMS Microbiol Ecol 85:, 14–26. [CrossRef][PubMed]
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  12. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  13. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  15. Mohn W. W., Wilson A. E., Bicho P., Moore E. R. B.. ( 1999;). Physiological and phylogenetic diversity of bacteria growing on resin acids. . Syst Appl Microbiol 22:, 68–78. [CrossRef][PubMed]
    [Google Scholar]
  16. Pastorella G., Gazzola G., Guadarrama S., Marsili E.. ( 2012;). Biofilms: applications in bioremediation. . In Microbial Biofilms, pp. 73–98. Edited by Lear G., Lewis G. D... Norwich:: Caister Academic Press;.
    [Google Scholar]
  17. Poly F., Monrozier L. J., Bally R.. ( 2001;). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. . Res Microbiol 152:, 95–103. [CrossRef][PubMed]
    [Google Scholar]
  18. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  19. Shao Y., Chung B. S., Lee S. S., Park W., Lee S. S., Jeon C. O.. ( 2009;). Zoogloea caeni sp. nov., a floc-forming bacterium isolated from activated sludge. . Int J Syst Evol Microbiol 59:, 526–530. [CrossRef][PubMed]
    [Google Scholar]
  20. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology. pp. 607–654. Edited by Gerhardt P, Murray R. G. E., Wood W. A., Krieg N. R.., Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  21. Szabó I., Szoboszlay S., Kriszt B., Háhn J., Harkai P., Baka E., Táncsics A., Kaszab E., Privler Z., Kukolya J.. ( 2011;). Olivibacter oleidegradans sp. nov., a hydrocarbon-degrading bacterium isolated from a biofilter clean-up facility on a hydrocarbon-contaminated site. . Int J Syst Evol Microbiol 61:, 2861–2865. [CrossRef][PubMed]
    [Google Scholar]
  22. Szoboszlay S., Atzél B., Kukolya J., Tóth E. M., Márialigeti K., Schumann P., Kriszt B.. ( 2008;). Chryseobacterium hungaricum sp. nov., isolated from hydrocarbon-contaminated soil. . Int J Syst Evol Microbiol 58:, 2748–2754. [CrossRef][PubMed]
    [Google Scholar]
  23. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  24. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  25. Táncsics A., Szoboszlay S., Szabó I., Farkas M., Kovács B., Kukolya J., Mayer Z., Kriszt B.. ( 2012;). Quantification of subfamily I.2.C catechol 2,3-dioxygenase mRNA transcripts in groundwater samples of an oxygen-limited BTEX-contaminated site. . Environ Sci Technol 46:, 232–240. [CrossRef][PubMed]
    [Google Scholar]
  26. Táncsics A., Farkas M., Szoboszlay S., Szabó I., Kukolya J., Vajna B., Kovács B., Benedek T., Kriszt B.. ( 2013;). One-year monitoring of meta-cleavage dioxygenase gene expression and microbial community dynamics reveals the relevance of subfamily I.2.C extradiol dioxygenases in hypoxic, BTEX-contaminated groundwater. . Syst Appl Microbiol 36:, 339–350. [CrossRef][PubMed]
    [Google Scholar]
  27. Tarrand J. J., Gröschel D. H.. ( 1982;). Rapid, modified oxidase test for oxidase-variable bacterial isolates. . J Clin Microbiol 16:, 772–774.[PubMed]
    [Google Scholar]
  28. Unz R. F.. ( 1984;). Genus IV. Zoogloea Itzigsohn 1868, 30AL. . In Bergey’s Manual of Systematic Bacteriology, vol. 1, pp. 214–219. Edited by Krieg N. R., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  29. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  30. Weissbrodt D. G., Neu T. R., Kuhlicke U., Rappaz Y., Holliger C.. ( 2013;). Assessment of bacterial and structural dynamics in aerobic granular biofilms. . Front Microbiol 4:, 175. [CrossRef][PubMed]
    [Google Scholar]
  31. Xie C. H., Yokota A.. ( 2006;). Zoogloea oryzae sp. nov., a nitrogen-fixing bacterium isolated from rice paddy soil, and reclassification of the strain ATCC 19623 as Crabtreella saccharophila gen. nov., sp. nov.. Int J Syst Evol Microbiol 56:, 619–624. [CrossRef][PubMed]
    [Google Scholar]
  32. Zhao Y., Huang J., Zhao H., Yang H.. ( 2013;). Microbial community and N removal of aerobic granular sludge at high COD and N loading rates. . Bioresour Technol 143:, 439–446. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.068486-0
Loading
/content/journal/ijsem/10.1099/ijs.0.068486-0
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error