1887

Abstract

While characterizing a related strain, it was noted that there was little difference between the 16S rRNA gene sequences of LMG 22858 and DSM 16189. Phenotypic characterization revealed differences only in the utilization of mannose and galactose and slight variation in pigmentation. Whole genome shotgun sequencing and comparative genomics were used to calculate established phylogenomic metrics and explain phenotypic differences. The full, genome-derived 16S rRNA gene sequences were 99.74 % similar. The average nucleotide identity (ANI) of the two strains was 98.0 %, the average amino acid identity (AAI) was 98.3 %, and the estimated DNA–DNA hybridization determined by the genome–genome distance calculator was 80.3 %. These values are higher than the species thresholds for these metrics, which are 95 %, 95 % and 70 %, respectively, suggesting that these two strains should be classified as members of the same species. We propose reclassification of as a later heterotypic synonym of and an emended description of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.068205-0
2014-11-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/11/3804.html?itemId=/content/journal/ijsem/10.1099/ijs.0.068205-0&mimeType=html&fmt=ahah

References

  1. Aziz R. K., Bartels D., Best A. A., DeJongh M., Disz T., Edwards R. A., Formsma K., Gerdes S., Glass E. M.. & other authors ( 2008;). The rast server: rapid annotations using subsystems technology. . BMC Genomics 9:, 75. [CrossRef][PubMed]
    [Google Scholar]
  2. Buonaccorsi V. P., Boyle M. D., Grove D., Praul C., Sakk E., Stuart A., Tobin T., Hosler J., Carney S. L.. & other authors ( 2011;). GCAT-SEEKquence: genome consortium for active teaching of undergraduates through increased faculty access to next-generation sequencing data. . CBE Life Sci Educ 10:, 342–345. [CrossRef][PubMed]
    [Google Scholar]
  3. Buonaccorsi V. P., Peterson M., Lamendella G., Newman J. D., Trun N., Tobin T., Aguilar A., Hunt A., Praul C.. & other authors ( 2014;). Vision and change through the genome consortium for active teaching using next-generation sequencing (GCAT-SEEK). . CBE Life Sci Educ 13:, 1–2.[PubMed]
    [Google Scholar]
  4. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  5. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. ( 2007;). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol 57:, 81–91. [CrossRef][PubMed]
    [Google Scholar]
  6. Khaneja R., Perez-Fons L., Fakhry S., Baccigalupi L., Steiger S., To E., Sandmann G., Dong T. C., Ricca E.. & other authors ( 2010;). Carotenoids found in Bacillus. . J Appl Microbiol 108:, 1889–1902.[PubMed]
    [Google Scholar]
  7. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  8. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  9. Kirk K. E., Hoffman J. A., Smith K. A., Strahan B. L., Failor K. C., Krebs J. E., Gale A. N., Do T. D., Sontag T. C.. & other authors ( 2013;). Chryseobacterium angstadtii sp. nov., isolated from a newt tank. . Int J Syst Evol Microbiol 63:, 4777–4783. [CrossRef][PubMed]
    [Google Scholar]
  10. Konstantinidis K. T., Tiedje J. M.. ( 2005a;). Genomic insights that advance the species definition for prokaryotes. . Proc Natl Acad Sci U S A 102:, 2567–2572. [CrossRef][PubMed]
    [Google Scholar]
  11. Konstantinidis K. T., Tiedje J. M.. ( 2005b;). Towards a genome-based taxonomy for prokaryotes. . J Bacteriol 187:, 6258–6264. [CrossRef][PubMed]
    [Google Scholar]
  12. Meier-Kolthoff J. P., Auch A. F., Klenk H.-P., Göker M.. ( 2013;). Genome sequence-based species delimitation with confidence intervals and improved distance functions. . BMC Bioinformatics 14:, 60. [CrossRef][PubMed]
    [Google Scholar]
  13. Melendez-Martinez A. J., Stinco C. M., Liu C., Wang X. D.. ( 2013;). A simple HPLC method for the comprehensive analysis of cis/trans (Z/E) geometrical isomers of carotenoids for nutritional studies. . Food Chem 138:, 1341–1350. [CrossRef][PubMed]
    [Google Scholar]
  14. Myers E. W., Miller W.. ( 1988;). Optimal alignments in linear space. . Comput Appl Biosci 4:, 11–17.[PubMed]
    [Google Scholar]
  15. Newman J. D.. ( 2000;). Molecular phylogeny in the undergraduate microbiology laboratory. . Focus on Microbiol Educ 6:, 3–4.
    [Google Scholar]
  16. Overbeek R., Begley T., Butler R. M., Choudhuri J. V., Chuang H. Y., Cohoon M., de Crécy-Lagard V., Diaz N., Disz T.. & other authors ( 2005;). The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. . Nucleic Acids Res 33:, 5691–5702. [CrossRef][PubMed]
    [Google Scholar]
  17. Overbeek R., Olson R., Pusch G. D., Olsen G. J., Davis J. J., Disz T., Edwards R. A., Gerdes S., Parrello B.. & other authors ( 2014;). The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). . Nucleic Acids Res 42: (D1), D206–D214. [CrossRef][PubMed]
    [Google Scholar]
  18. Pelz A., Wieland K. P., Putzbach K., Hentschel P., Albert K., Götz F.. ( 2005;). Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. . J Biol Chem 280:, 32493–32498. [CrossRef][PubMed]
    [Google Scholar]
  19. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106:, 19126–19131. [CrossRef][PubMed]
    [Google Scholar]
  20. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  21. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  22. Strahan B. L., Failor K. C., Batties A. M., Hayes P. S., Cicconi K. M., Mason C. T., Newman J. D.. ( 2011;). Chryseobacterium piperi sp. nov., isolated from a freshwater creek. . Int J Syst Evol Microbiol 61:, 2162–2166. [CrossRef][PubMed]
    [Google Scholar]
  23. Suresh K., Prabagaran S. R., Sengupta S., Shivaji S.. ( 2004;). Bacillus indicus sp. nov., an arsenic-resistant bacterium isolated from an aquifer in West Bengal, India. . Int J Syst Evol Microbiol 54:, 1369–1375. [CrossRef][PubMed]
    [Google Scholar]
  24. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef][PubMed]
    [Google Scholar]
  25. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  26. Yoon J. H., Lee C. H., Oh T. K.. ( 2005;). Bacillus cibi sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. . Int J Syst Evol Microbiol 55:, 733–736. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.068205-0
Loading
/content/journal/ijsem/10.1099/ijs.0.068205-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error