1887

Abstract

An aerobic, Gram-stain-negative, non-motile coccus, designated strain GVCNT2, was isolated from the tonsils of a healthy adult female. Cells were oxidase- and catalase-positive, positive for the production of esterase (C4), esterase lipase (C8) and leucine arylamidase, and weakly positive for naphthol-AS-BI-phosphohydrolase and alkaline phosphatase. Cells were also capable of hydrolysing DNA. Growth was observed at 20–37 °C and in the presence of up to 1.5 % NaCl. Phylogenetic analysis of near full-length 16S rRNA gene sequences indicated that the strain exhibited closest sequence similarity to ATCC 700022 (94.68 %) and an uncultured, unspeciated bacterial clone (strain S12-08; 99 %). The major fatty acids were Cω9, C, C and Cω6/Cω7. The DNA G+C content of strain GVCNT2 was 40.7 mol%. The major respiratory quinone identified was Q-8. Strain GVCNT2 exhibited a comparable phenotypic profile to other members of the genus but could be distinguished based on its ability to produce acid (weakly) from -glucose, melibiose, -arabinose and rhamnose and on its ability to hydrolyse DNA. On the basis of phenotypic and phylogenetic differences from other members of the family , strain GVCNT2 is considered to represent a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is GVCNT2 ( = DSM 28411 = NCIMB 14946).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.066837-0
2015-01-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/1/11.html?itemId=/content/journal/ijsem/10.1099/ijs.0.066837-0&mimeType=html&fmt=ahah

References

  1. Álvarez-Pérez S., Lievens B., Jacquemyn H., Herrera C. M.. ( 2013;). Acinetobacter nectaris sp. nov. and Acinetobacter boissieri sp. nov., isolated from floral nectar of wild Mediterranean insect-pollinated plants. . Int J Syst Evol Microbiol 63:, 1532–1539. [CrossRef][PubMed]
    [Google Scholar]
  2. Bogan B. W., Sullivan W. R., Kayser K. J., Derr K. D., Aldrich H. C., Paterek J. R.. ( 2003;). Alkanindiges illinoisensis gen. nov., sp. nov., an obligately hydrocarbonoclastic, aerobic squalane-degrading bacterium isolated from oilfield soils. . Int J Syst Evol Microbiol 53:, 1389–1395. [CrossRef][PubMed]
    [Google Scholar]
  3. Bowman J. P., Cavanagh J., Austin J. J., Sanderson K.. ( 1996;). Novel Psychrobacter species from Antarctic ornithogenic soils. . Int J Syst Bacteriol 46:, 841–848. [CrossRef][PubMed]
    [Google Scholar]
  4. Brisou J., Prevot A. R.. ( 1954;). [Studies on bacterial taxonomy. X. The revision of species under Acromobacter group]. . Ann Inst Pasteur (Paris) 86:, 722–728.[PubMed]
    [Google Scholar]
  5. Cowan S. T., Steel K. J.. ( 1974;). Manual for the Identification of Medical Bacteria. London:: Cambridge University Press;.
    [Google Scholar]
  6. Gregersen T.. ( 1978;). Rapid method for distinction of Gram-negative from Gram-positive bacteria. . Eur J Microbiol Biotechnol 5:, 123–127. [CrossRef]
    [Google Scholar]
  7. Humphreys G. J., McBain A. J.. ( 2013;). Continuous culture of sessile human oropharyngeal microbiotas. . J Med Microbiol 62:, 906–916. [CrossRef][PubMed]
    [Google Scholar]
  8. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;. [CrossRef]
    [Google Scholar]
  9. Juni E., Heym G.. ( 1986;). Psychrobacter immobilis gen. nov., sp. nov.: genospecies composed of Gram-negative, aerobic, oxidase positive coccobacilli. . Int J Syst Bacteriol 36:, 388–391. [CrossRef]
    [Google Scholar]
  10. Kodjo A., Tønjum T., Richard Y., Bøvre K.. ( 1995;). Moraxella caprae sp. nov., a new member of the classical Moraxellae with very close affinity to Moraxella bovis. . Int J Syst Bacteriol 45:, 467–471. [CrossRef][PubMed]
    [Google Scholar]
  11. Kodjo A., Richard Y., Tønjum T.. ( 1997;). Moraxella boevrei sp. nov., a new Moraxella species found in goats. . Int J Syst Bacteriol 47:, 115–121. [CrossRef][PubMed]
    [Google Scholar]
  12. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E.. ( 1988;). Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. . Int J Syst Bacteriol 38:, 358–361. [CrossRef]
    [Google Scholar]
  13. Lwoff A.. ( 1939;). Révision et démembrement des Hemophileae, le genre Moraxella nov. gen.. Ann Inst Pasteur (Paris) 62:, 168–176.
    [Google Scholar]
  14. O’Sullivan L. A., Fuller K. E., Thomas E. M., Turley C. M., Fry J. C., Weightman A. J.. ( 2004;). Distribution and culturability of the uncultivated ‘AGG58 cluster’ of the Bacteroidetes phylum in aquatic environments. . FEMS Microbiol Ecol 47:, 359–370. [CrossRef][PubMed]
    [Google Scholar]
  15. Oh K. H., Lee S. Y., Lee M. H., Oh T. K., Yoon J. H.. ( 2011;). Paraperlucidibaca baekdonensis gen. nov., sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 61:, 1382–1385. [CrossRef][PubMed]
    [Google Scholar]
  16. Rossau R., Van Landschoot A., Gillis M., De Ley J.. ( 1991;). Taxonomy of Moraxellaceae fam. nov., a new bacterial family to accommodate the genera Moraxella, Acinetobacter, and Psychrobacter and related organisms. . Int J Syst Bacteriol 41:, 310–319. [CrossRef]
    [Google Scholar]
  17. Song J., Choo Y. J., Cho J. C.. ( 2008;). Perlucidibaca piscinae gen. nov., sp. nov., a freshwater bacterium belonging to the family Moraxellaceae. . Int J Syst Evol Microbiol 58:, 97–102. [CrossRef][PubMed]
    [Google Scholar]
  18. Staley J., Irgens R., Brenner D. J.. ( 1987;). Enhydrobacter aerosaccus gen. nov., sp. nov., a gas vacuolated, facultatively anaerobic, heterotrophic rod. . Int J Syst Bacteriol 37:, 289–291. [CrossRef]
    [Google Scholar]
  19. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performace liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  20. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  21. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  22. Tindall B. J.. ( 1990;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  23. Vandamme P., Gillis M., Vancanneyt M., Hoste B., Kersters K., Falsen E.. ( 1993;). Moraxella lincolnii sp. nov., isolated from the human respiratory tract, and reevaluation of the taxonomic position of Moraxella osloensis. . Int J Syst Bacteriol 43:, 474–481. [CrossRef][PubMed]
    [Google Scholar]
  24. Vela A. I., Arroyo E., Aragón V., Sánchez-Porro C., Latre M. V., Cerdà-Cuéllar M., Ventosa A., Domínguez L., Fernández-Garayzábal J. F.. ( 2009;). Moraxella pluranimalium sp. nov., isolated from animal specimens. . Int J Syst Evol Microbiol 59:, 671–674. [CrossRef][PubMed]
    [Google Scholar]
  25. Yoon J. H., Yeo S. H., Oh T. K., Park Y. H.. ( 2005;). Psychrobacter alimentarius sp. nov., isolated from squid jeotgal, a traditional Korean fermented seafood. . Int J Syst Evol Microbiol 55:, 171–176. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.066837-0
Loading
/content/journal/ijsem/10.1099/ijs.0.066837-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error