1887

Abstract

Two bacterial strains (B18BM42 and B18NM6) were recovered during a study of bacterial diversity on wine grapes ( L.) from the Nemea region in Greece. Phylogenetic analysis based on 16S rRNA gene sequences placed the two strains within the genus , and found them to be most closely related to NRIC 1625 followed by NRIC 1536 (99.1 and 98.9 % sequence similarity, respectively). The level of DNA–DNA relatedness between strains B18NM42 and NRIC 1625 or NRIC 1536 was 31.9 and 35.0 %, respectively. The two novel strains could be genetically differentiated from their closest relatives by REA-PFGE (restriction enzyme analysis-pulse field gel electrophoresis), RAPD (randomly amplified polymorphic DNA) and rep-PC R analyses (repetitive sequence-based PCR). Physiological examination showed that the novel strains can be distinguished from phylogenetically related species by their ability to grow at 42 °C and by certain carbohydrate fermentations. Based on the evidence above, the affiliation of the two strains to a novel species with the proposed name sp. nov. is suggested. The type strain is B18NM42 ( = DSM 28060 = NCCB 100484).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.066209-0
2014-11-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/11/3885.html?itemId=/content/journal/ijsem/10.1099/ijs.0.066209-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Argyri A. A., Nisiotou A. A., Mallouchos A., Panagou E. Z., Tassou C. C.. ( 2014;). Performance of two potential probiotic Lactobacillus strains from the olive microbiota as starters in the fermentation of heat shocked green olives. . Int J Food Microbiol 171:, 68–76. [CrossRef][PubMed]
    [Google Scholar]
  3. Bae S., Fleet G. H., Heard G. M.. ( 2006;). Lactic acid bacteria associated with wine grapes from several Australian vineyards. . J Appl Microbiol 100:, 712–727. [CrossRef][PubMed]
    [Google Scholar]
  4. Björkroth K. J., Schillinger U., Geisen R., Weiss N., Hoste B., Holzapfel W. H., Korkeala H. J., Vandamme P.. ( 2002;). Taxonomic study of Weissella confusa and description of Weissella cibaria sp. nov., detected in food and clinical samples. . Int J Syst Evol Microbiol 52:, 141–148.[PubMed]
    [Google Scholar]
  5. Collins M. D., Samelis J., Metaxopoulos J., Wallbanks S.. ( 1993;). Taxonomic studies on some leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. . J Appl Bacteriol 75:, 595–603. [CrossRef][PubMed]
    [Google Scholar]
  6. De Bruyne K., Camu N., Lefebvre K., De Vuyst L., Vandamme P.. ( 2008;). Weissella ghanensis sp. nov., isolated from a Ghanaian cocoa fermentation. . Int J Syst Evol Microbiol 58:, 2721–2725. [CrossRef][PubMed]
    [Google Scholar]
  7. De Bruyne K., Camu N., De Vuyst L., Vandamme P.. ( 2010;). Weissella fabaria sp. nov., from a Ghanaian cocoa fermentation. . Int J Syst Evol Microbiol 60:, 1999–2005. [CrossRef][PubMed]
    [Google Scholar]
  8. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  9. De Man J. C., Rogosa M., Sharpe M. E.. ( 1960;). A medium for the cultivation of lactobacilli. . J Appl Bacteriol 23:, 130–135. [CrossRef]
    [Google Scholar]
  10. Edwards U., Rogall T., Blöcker H., Emde M., Böttger E. C.. ( 1989;). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. . Nucleic Acids Res 17:, 7843–7853. [CrossRef][PubMed]
    [Google Scholar]
  11. Fontana C., Sandro Cocconcelli P., Vignolo G.. ( 2005;). Monitoring the bacterial population dynamics during fermentation of artisanal Argentinean sausages. . Int J Food Microbiol 103:, 131–142. [CrossRef][PubMed]
    [Google Scholar]
  12. Gevers D., Huys G., Swings J.. ( 2001;). Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. . FEMS Microbiol Lett 205:, 31–36. [CrossRef][PubMed]
    [Google Scholar]
  13. Holzapfel W. H., Gerber E. S.. ( 1983;). Lactobacillus divergens sp. nov., a new heterofermentative Lactobacillus species producing l(+)-lactate. . Syst Appl Microbiol 4:, 522–534. [CrossRef][PubMed]
    [Google Scholar]
  14. Holzapfel W. H., Schillinger U.. ( 1991;). The genus Leuconostoc. . In The Prokaryotes, , 2nd edn., vol. 2, pp. 1508–1534. Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H... New York:: Springer;.
    [Google Scholar]
  15. Huß V. A. R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  16. Kagkli D. M., Vancanneyt M., Hill C., Vandamme P., Cogan T. M.. ( 2007;). Enterococcus and Lactobacillus contamination of raw milk in a farm dairy environment. . Int J Food Microbiol 114:, 243–251. [CrossRef][PubMed]
    [Google Scholar]
  17. Kandler O., Weiss N.. ( 1986;). Genus Lactobacillus Beijerinck 1901, 212AL. . In Bergey’s Manual of Systematic Bacteriology, vol. 2, pp. 1209–1234. Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G... Baltimore, MD:: Williams & Wilkins;.
    [Google Scholar]
  18. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  19. König H., Fröhlich J.. ( 2009;). Lactic acid bacteria. . In Biology of Microorganisms on Grapes, in Must and in Wine, pp. 3–29. Edited by König H., Unden G., Fröhlich J... Berlin, Heidelberg:: Springer;. [CrossRef]
    [Google Scholar]
  20. Lee J. S., Lee K. C., Ahn J. S., Mheen T. I., Pyun Y. R., Park Y. H.. ( 2002;). Weissella koreensis sp. nov., isolated from kimchi. . Int J Syst Evol Microbiol 52:, 1257–1261. [CrossRef][PubMed]
    [Google Scholar]
  21. Liu S.-Q.. ( 2002;). Malolactic fermentation in wine – beyond deacidification. . J Appl Microbiol 92:, 589–601. [CrossRef][PubMed]
    [Google Scholar]
  22. Lonvaud-Funel A.. ( 1999;). Lactic acid bacteria in the quality improvement and depreciation of wine. . Antonie van Leeuwenhoek 76:, 317–331. [CrossRef][PubMed]
    [Google Scholar]
  23. Magnusson J., Jonsson H., Schnürer J., Roos S.. ( 2002;). Weissella soli sp. nov., a lactic acid bacterium isolated from soil. . Int J Syst Evol Microbiol 52:, 831–834. [CrossRef][PubMed]
    [Google Scholar]
  24. Manzano M., Cocolin L., Cantoni C., Comi G.. ( 2003;). Bacillus cereus, Bacillus thuringiensis and Bacillus mycoides differentiation using a PCR-RE technique. . Int J Food Microbiol 81:, 249–254. [CrossRef][PubMed]
    [Google Scholar]
  25. Martinez-Murcia A. J., Collins M. D.. ( 1990;). A phylogenetic analysis of the genus Leuconostoc based on reverse transcriptase sequencing of 16s rRNA. . FEMS Microbiol Lett 70:, 73–83. [CrossRef]
    [Google Scholar]
  26. Martinez-Murcia A. J., Collins M. D.. ( 1991;). A phylogenetic analysis of an atypical leuconostoc: description of Leuconostoc fallax sp. nov.. FEMS Microbiol Lett 82:, 55–59. [CrossRef][PubMed]
    [Google Scholar]
  27. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  28. Naser S. M., Thompson F. L., Hoste B., Gevers D., Dawyndt P., Vancanneyt M., Swings J.. ( 2005;). Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. . Microbiology 151:, 2141–2150. [CrossRef][PubMed]
    [Google Scholar]
  29. Nisiotou A. A., Rantsiou K., Iliopoulos V., Cocolin L., Nychas G. J.. ( 2011;). Bacterial species associated with sound and Botrytis-infected grapes from a Greek vineyard. . Int J Food Microbiol 145:, 432–436. [CrossRef][PubMed]
    [Google Scholar]
  30. Oh S. J., Shin N. R., Hyun D. W., Kim P. S., Kim J. Y., Kim M. S., Yun J. H., Bae J. W.. ( 2013;). Weissella diestrammenae sp. nov., isolated from the gut of a camel cricket (Diestrammena coreana). . Int J Syst Evol Microbiol 63:, 2951–2956. [CrossRef][PubMed]
    [Google Scholar]
  31. Padonou S. W., Schillinger U., Nielsen D. S., Franz C. M., Hansen M., Hounhouigan J. D., Nago M. C., Jakobsen M.. ( 2010;). Weissella beninensis sp. nov., a motile lactic acid bacterium from submerged cassava fermentations, and emended description of the genus Weissella. . Int J Syst Evol Microbiol 60:, 2193–2198. [CrossRef][PubMed]
    [Google Scholar]
  32. Snauwaert I., Papalexandratou Z., De Vuyst L., Vandamme P.. ( 2013;). Characterization of strains of Weissella fabalis sp. nov. and Fructobacillus tropaeoli from spontaneous cocoa bean fermentations. . Int J Syst Evol Microbiol 63:, 1709–1716. [CrossRef][PubMed]
    [Google Scholar]
  33. Spano G., Beneduce L., Tarantino D., Zapparoli G., Massa S.. ( 2002;). Characterization of Lactobacillus plantarum from wine must by PCR species-specific and RAPD-PCR. . Lett Appl Microbiol 35:, 370–374. [CrossRef][PubMed]
    [Google Scholar]
  34. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef][PubMed]
    [Google Scholar]
  35. Tanasupawat S., Shida O., Okada S., Komagata K.. ( 2000;). Lactobacillus acidipiscis sp. nov. and Weissella thailandensis sp. nov., isolated from fermented fish in Thailand. . Int J Syst Evol Microbiol 50:, 1479–1485. [CrossRef][PubMed]
    [Google Scholar]
  36. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  37. Tittsler R. P., Sandholzer L. A.. ( 1936;). The use of semi-solid agar for the detection of bacterial motility. . J Bacteriol 31:, 575–580.[PubMed]
    [Google Scholar]
  38. Tohno M., Kitahara M., Inoue H., Uegaki R., Irisawa T., Ohkuma M., Tajima K.. ( 2013;). Weissella oryzae sp. nov., isolated from fermented rice grains. . Int J Syst Evol Microbiol 63:, 1417–1420. [CrossRef][PubMed]
    [Google Scholar]
  39. Vela A. I., Fernández A., de Quirós Y. B., Herráez P., Domínguez L., Fernández-Garayzábal J. F.. ( 2011;). Weissella ceti sp. nov., isolated from beaked whales (Mesoplodon bidens). . Int J Syst Evol Microbiol 61:, 2758–2762. [CrossRef][PubMed]
    [Google Scholar]
  40. Versalovic J., Schneider M., De Bruijn F. J., Lupski J. R.. ( 1994;). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. . Methods Mol Cell Biol 5:, 25–40.
    [Google Scholar]
  41. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.066209-0
Loading
/content/journal/ijsem/10.1099/ijs.0.066209-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error