1887

Abstract

A Gram-stain-negative, non-motile, mesophilic, aerobic, rod-shaped bacterium, designated strain 2-3, was isolated from surface seawater at Muroto city, Kochi prefecture, Japan. This strain grew well with starch. Phylogenetic analyses based on 16S rRNA gene sequences showed that the strain fell within the family and that the strain was related most closely to the genus (94.0 % sequence similarity to the type strain). The DNA G+C content was 52.4 mol%. The major fatty acids were Cω7, C and C. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, one unidentified lipid, one unidentified aminolipid and one unidentified phospholipid. The major isoprenoid quinone was Q-10. Strain 2-3 did not grow at 4 or 35 °C, while the type strain of the type species of the genus grows at both temperatures. From the taxonomic data obtained in this study, it is proposed that strain 2-3 be placed into a novel genus and species named gen. nov., sp. nov. in the family . The type strain of is 2-3 ( = NBRC 110140 = LMG 28364).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.065847-0
2014-12-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/12/4016.html?itemId=/content/journal/ijsem/10.1099/ijs.0.065847-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. . J Mol Biol 215:, 403–410. [CrossRef][PubMed]
    [Google Scholar]
  2. Barrow G. I., Feltham R. K. A.. (editors) ( 1993;). Cowman and Steel's Manual for the Identification of Medical Bacteria, 3rd edn. . Cambridge: Cambridge University Press;. [CrossRef]
  3. DeLong E. F., Preston C. M., Mincer T., Rich V., Hallam S. J., Frigaard N. U., Martinez A., Sullivan M. B., Edwards R.. & other authors ( 2006;). Community genomics among stratified microbial assemblages in the ocean’s interior. . Science 311:, 496–503. [CrossRef][PubMed]
    [Google Scholar]
  4. Dyksterhouse S. E., Gray J. P., Herwig R. P., Lara J. C., Staley J. T.. ( 1995;). Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. . Int J Syst Bacteriol 45:, 116–123. [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  7. Hansman R. L., Griffin S., Watson J. T., Druffel E. R., Ingalls A. E., Pearson A., Aluwihare L. I.. ( 2009;). The radiocarbon signature of microorganisms in the mesopelagic ocean. . Proc Natl Acad Sci U S A 106:, 6513–6518. [CrossRef][PubMed]
    [Google Scholar]
  8. Ivanova E. P., Webb H., Christen R., Zhukova N. V., Kurilenko V. V., Kalinovskaya N. I., Crawford R. J.. ( 2010;). Celeribacter neptunius gen. nov., sp. nov., a new member of the class Alphaproteobacteria. . Int J Syst Evol Microbiol 60:, 1620–1625. [CrossRef][PubMed]
    [Google Scholar]
  9. Katayama-Fujimura Y., Komatsu Y., Kuraishi H., Kaneko T.. ( 1984;). Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. . Agric Biol Chem 48:, 3169–3172. [CrossRef]
    [Google Scholar]
  10. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). clustal w and clustal_x version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  11. Leifson E.. ( 1963;). Determination of carbohydrate metabolism of marine bacteria. . J Bacteriol 85:, 1183–1184.[PubMed]
    [Google Scholar]
  12. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  13. Nishijima M., Araki-Sakai M., Sano H.. ( 1997;). Identification of isoprenoid quinones by frit-FAB liquid chromatography–mass spectrometry for the chemotaxonomy of microorganisms. . J Microbiol Methods 28:, 113–122. [CrossRef]
    [Google Scholar]
  14. Romanenko L. A., Tanaka N., Svetashev V. I., Kalinovskaya N. I.. ( 2011a;). Pacificibacter maritimus gen. nov., sp. nov., isolated from shallow marine sediment. . Int J Syst Evol Microbiol 61:, 1375–1381. [CrossRef][PubMed]
    [Google Scholar]
  15. Romanenko L. A., Tanaka N., Svetashev V. I., Mikhailov V. V.. ( 2011b;). Vadicella arenosi gen. nov., sp. nov., a novel member of the class Alphaproteobacteria isolated from sandy sediments from the Sea of Japan seashore. . Curr Microbiol 62:, 795–801. [CrossRef][PubMed]
    [Google Scholar]
  16. Saito H., Miura K. I.. ( 1963;). Preparation of transforming deoxyribonucleic acid by phenol treatment. . Biochim Biophys Acta 72:, 619–629. [CrossRef][PubMed]
    [Google Scholar]
  17. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  18. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef][PubMed]
    [Google Scholar]
  19. Teramoto M., Suzuki M., Okazaki F., Hatmanti A., Harayama S.. ( 2009;). Oceanobacter-related bacteria are important for the degradation of petroleum aliphatic hydrocarbons in the tropical marine environment. . Microbiology 155:, 3362–3370. [CrossRef][PubMed]
    [Google Scholar]
  20. Teramoto M., Ohuchi M., Hatmanti A., Darmayati Y., Widyastuti Y., Harayama S., Fukunaga Y.. ( 2011;). Oleibacter marinus gen. nov., sp. nov., a bacterium that degrades petroleum aliphatic hydrocarbons in a tropical marine environment. . Int J Syst Evol Microbiol 61:, 375–380. [CrossRef][PubMed]
    [Google Scholar]
  21. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  22. Yarza P., Richter M., Peplies J., Euzéby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. ( 2008;). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol 31:, 241–250. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.065847-0
Loading
/content/journal/ijsem/10.1099/ijs.0.065847-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error