1887

Abstract

A novel Gram-staining-negative, non-motile and rod-shaped bacterial strain containing flexirubin-type pigments, designated S31, was isolated from bank-side soil of the Xixi wetland in Zhejiang province, China. Growth occurred at 10–37 °C (optimum, 32 °C), pH 6–8 (optimum, pH 7) and with 0–2 % (w/v) NaCl (optimum, 1 %). Strain S31 shared highest 16S rRNA gene sequence similarities with H1 (96.2 %) and DW3 (96.4 %). Phylogenetic analysis suggested that strain S31 was a member of the genus . The dominant respiratory quinone was MK-6 and the DNA G+C content was 33.3 mol%. The major fatty acids were iso-C, summed feature 3 (iso-C 2-OH and/or Cω7) and anteiso-C. The major polar lipids of strain S31 were phosphatidylethanolamine, three unidentified aminolipids and four unidentified polar lipids. Based on its phenotypic and chemotaxonomic characteristics and phylogenetic data, strain S31 represents a novel species of the genus , for which the name sp. nov. (type strain S31 = CGMCC 1.12802 = NBRC 110387) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.065771-0
2014-12-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/12/4155.html?itemId=/content/journal/ijsem/10.1099/ijs.0.065771-0&mimeType=html&fmt=ahah

References

  1. Dong X. Z., Cai M. Y.. ( 2001;). Common Manual of Systematic Bacteriology. Beijing:: Science Press;.
    [Google Scholar]
  2. Fautz E., Reichenbach H.. ( 1980;). A simple test for flexirubin-type pigments. . FEMS Microbiol Lett 8:, 87–91. [CrossRef]
    [Google Scholar]
  3. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  4. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  5. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  6. Herzog P., Winkler I., Wolking D., Kämpfer P., Lipski A.. ( 2008;). Chryseobacterium ureilyticum sp. nov., Chryseobacterium gambrini sp. nov., Chryseobacterium pallidum sp. nov. and Chryseobacterium molle sp. nov., isolated from beer-bottling plants. . Int J Syst Evol Microbiol 58:, 26–33. [CrossRef][PubMed]
    [Google Scholar]
  7. Huang Y. L., Ki J. S., Case R., Qian P. Y.. ( 2008;). Diversity and acylhomoserine lactone production among subtidal biofilm forming bacteria. . Aquat Microb Ecol 52:, 185–193. [CrossRef]
    [Google Scholar]
  8. Huo Y. Y., Xu X. W., Cui H. L., Wu M.. ( 2010;). Gracilibacillus ureilyticus sp. nov., a halotolerant bacterium from a saline-alkaline soil. . Int J Syst Evol Microbiol 60:, 1383–1386. [CrossRef][PubMed]
    [Google Scholar]
  9. Jeon Y. S., Lee K., Park S. C., Kim B. S., Cho Y. J., Ha S. M., Chun J.. ( 2014;). EzEditor: a versatile sequence alignment editor for both rRNA- and protein-coding genes. . Int J Syst Evol Microbiol 64:, 689–691. [CrossRef][PubMed]
    [Google Scholar]
  10. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  11. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  12. Komagata K., Suzuki K.. ( 1987;). Lipids and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  13. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E.. ( 1988;). Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. . Int J Syst Bacteriol 38:, 358–361. [CrossRef]
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  15. O’Sullivan L. A., Rinna J., Humphreys G., Weightman A. J., Fry J. C.. ( 2006;). Culturable phylogenetic diversity of the phylum ‘Bacteroidetes’ from river epilithon and coastal water and description of novel members of the family Flavobacteriaceae: Epilithonimonas tenax gen. nov., sp. nov. and Persicivirga xylanidelens gen. nov., sp. nov.. Int J Syst Evol Microbiol 56:, 169–180. [CrossRef][PubMed]
    [Google Scholar]
  16. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  17. Shakéd T., Hantsis-Zacharov E., Halpern M.. ( 2010;). Epilithonimonas lactis sp. nov., isolated from raw cow’s milk. . Int J Syst Evol Microbiol 60:, 675–679. [CrossRef][PubMed]
    [Google Scholar]
  18. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.065771-0
Loading
/content/journal/ijsem/10.1099/ijs.0.065771-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error