1887

Abstract

Sixteen strains of symbiotic bacteria from root nodules of grown in Ottawa, Canada, were previously characterized and placed in a novel group within the genus . To verify their taxonomic status, these strains were further characterized using a polyphasic approach. All strains possessed identical 16S rRNA gene sequences that were 99.79 % similar to the closest relative, LMG 18230. Phylogenetic analysis of concatenated and genes divided the 16 strains into three multilocus sequence types that were placed in a highly supported lineage distinct from named species of the genus consistent with results of DNA–DNA hybridization. Based on analysis of symbiosis gene sequences ( and ), all novel strains were placed in a phylogenetic group with five species of the genus that nodulate soybeans. The combination of phenotypic characteristics from several tests including carbon and nitrogen source utilization and antibiotic resistance could be used to differentiate representative strains from recognized species of the genus . Novel strain OO99 elicits effective nodules on , and , partially effective nodules on and , and ineffective nodules on and . Based on the data presented, we conclude that our strains represent a novel species for which the name Bradyrhizobium sp. nov. is proposed, with OO99 ( = LMG 26739 = HAMBI 3284) as the type strain. The DNA G+C content is 62.6 mol%.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.065540-0
2014-09-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/9/3202.html?itemId=/content/journal/ijsem/10.1099/ijs.0.065540-0&mimeType=html&fmt=ahah

References

  1. Altekar G., Dwarkadas S., Huelsenbeck J. P., Ronquist F.. ( 2004;). Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. . Bioinformatics 20:, 407–415. [CrossRef][PubMed]
    [Google Scholar]
  2. Bromfield E. S. P., Tambong J. T., Cloutier S., Prévost D., Laguerre G., van Berkum P., Tran Thi T. V., Assabgui R., Barran L. R.. ( 2010;). Ensifer, Phyllobacterium and Rhizobium species occupy nodules of Medicago sativa (alfalfa) and Melilotus alba (sweet clover) grown at a Canadian site without a history of cultivation. . Microbiology 156:, 505–520. [CrossRef][PubMed]
    [Google Scholar]
  3. Chahboune R., Carro L., Peix A., Barrijal S., Velázquez E., Bedmar E. J.. ( 2011;). Bradyrhizobium cytisi sp. nov., isolated from effective nodules of Cytisus villosus in Morocco. . Int J Syst Evol Microbiol 61:, 2922–2927. [CrossRef][PubMed]
    [Google Scholar]
  4. Cole J. R., Wang Q., Fish J. A., Chai B., McGarrell D. M., Sun Y., Brown C. T., Porras-Alfaro A., Kuske C. R., Tiedje J. M.. ( 2014;). Ribosomal Database Project: data and tools for high throughput rRNA analysis. . Nucleic Acids Res 42: (Database issue), D633–D642. [CrossRef][PubMed]
    [Google Scholar]
  5. Darriba D., Taboada G. L., Doallo R., Posada D.. ( 2012;). jModelTest 2: more models, new heuristics and parallel computing. . Nat Methods 9:, 772. [CrossRef][PubMed]
    [Google Scholar]
  6. Garrity G. M., Bell J. A., Lilburn T.. ( 2005;). Family VII. Bradyrhizobiaceae fam. nov.. In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2, pp. 438. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M... New York:: Springer;.
    [Google Scholar]
  7. Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O.. ( 2010;). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. . Syst Biol 59:, 307–321. [CrossRef][PubMed]
    [Google Scholar]
  8. Hayat M. A., Miller S. E.. ( 1990;). Negative Staining, pp. 1–253. New York:: McGraw-Hill;.
    [Google Scholar]
  9. Hussey M. A., Zayaitz A.. ( 2012;). Endospore stain protocol. . Wasinghton, DC:: American Society for Microbiology;. http://www.microbelibrary.org
  10. Itakura M., Tabata K., Eda S., Mitsui H., Murakami K., Yasuda J., Minamisawa K.. ( 2008;). Generation of Bradyrhizobium japonicum mutants with increased N2O reductase activity by selection after introduction of a mutated dnaQ gene. . Appl Environ Microbiol 74:, 7258–7264. [CrossRef][PubMed]
    [Google Scholar]
  11. Laguerre G., Nour S. M., Macheret V., Sanjuan J., Drouin P., Amarger N.. ( 2001;). Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. . Microbiology 147:, 981–993.[PubMed]
    [Google Scholar]
  12. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  13. Powers E. M.. ( 1995;). Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. . Appl Environ Microbiol 61:, 3756–3758.[PubMed]
    [Google Scholar]
  14. Rivas R., Martens M., de Lajudie P., Willems A.. ( 2009;). Multilocus sequence analysis of the genus Bradyrhizobium. . Syst Appl Microbiol 32:, 101–110. [CrossRef][PubMed]
    [Google Scholar]
  15. Ronquist F., Teslenko M., van der Mark P., Ayres D. L., Darling A., Höhna S., Larget B., Liu L., Suchard M. A., Huelsenbeck J. P.. ( 2012;). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. . Syst Biol 61:, 539–542. [CrossRef][PubMed]
    [Google Scholar]
  16. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc;.
  17. Shields P., Cathcart L.. ( 2012;). Motility test medium protocol. . Wasinghton, DC:: American Society for Microbiology;. http://www.microbelibrary.org
  18. Sikora S., Said R., Bradić M.. ( 2002;). Genomic fingerprinting of Bradyrhizobium japonicum isolates by RAPD and rep-PCR. . Microbiol Res 157:, 213–219. [CrossRef][PubMed]
    [Google Scholar]
  19. Tang J., Bromfield E. S. P., Rodrigue N., Cloutier S., Tambong J. T.. ( 2012;). Microevolution of symbiotic Bradyrhizobium populations associated with soybeans in east North America. . Ecol Evol 2:, 2943–2961. [CrossRef][PubMed]
    [Google Scholar]
  20. Tighe S. W., de Lajudie P., Dipietro K., Lindström K., Nick G., Jarvis B. D. W.. ( 2000;). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. . Int J Syst Evol Microbiol 50:, 787–801. [CrossRef][PubMed]
    [Google Scholar]
  21. van Berkum P., Fuhrmann J. J.. ( 2000;). Evolutionary relationships among the soybean bradyrhizobia reconstructed from 16S rRNA gene and internally transcribed spacer region sequence divergence. . Int J Syst Evol Microbiol 50:, 2165–2172. [CrossRef][PubMed]
    [Google Scholar]
  22. Vincent J. M.. ( 1970;). A Manual for the PracticalSstudy of Root-Nodule Bacteria. Oxford:: Blackwell Scientific;.
    [Google Scholar]
  23. Wang R., Chang Y. L., Zheng W. T., Zhang D., Zhang X. X., Sui X. H., Wang E. T., Hu J. Q., Zhang L. Y., Chen W. X.. ( 2013;). Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China. . Syst Appl Microbiol 36:, 101–105. [CrossRef][PubMed]
    [Google Scholar]
  24. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  25. Willems A., Doignon-Bourcier F., Goris J., Coopman R., de Lajudie P., De Vos P., Gillis M.. ( 2001;). DNA-DNA hybridization study of Bradyrhizobium strains. . Int J Syst Evol Microbiol 51:, 1315–1322.[PubMed]
    [Google Scholar]
  26. Wittwer J. W.. ( 2014;). Exponential growth rate in Excel. . http://www.vertex42.com/ExcelArticles/exponential-growth.html.
  27. Xu L. M., Ge C., Cui Z., Li J., Fan H.. ( 1995;). Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybean. . Int J Syst Evol Microbiol 45:, 706–711.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.065540-0
Loading
/content/journal/ijsem/10.1099/ijs.0.065540-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error