1887

Abstract

Two bacterial strains, designated 180-3 and 214-4, isolated from human faeces were characterized by using a polyphasic taxonomic approach that included analysis of their phenotypic and biochemical features, cellular fatty acid profiles, menaquinone profiles and phylogenetic positions based on 16S rRNA gene sequence analysis. 16S rRNA gene sequence analysis showed that these strains represented members of the genus . These strains shared 97.9 % 16S rRNA gene sequence similarity with each other and were related to JCM 15149 (97 % sequence similarity) and JCM 15148 (94–95 %). Although strain 180-3 was related to (but distinct from) JCM 15149 and JCM 15148, with gene sequence similarities of 89.4 and 84.6 %, respectively, strain 214-4 exhibited high gene sequence similarity (100 %) with JCM 15149 and was different from JCM 15148 (83.5 %). DNA–DNA hybridization experiments demonstrated a genomic distinction of strains 180-3 and 214-4 from JCM 15149 and JCM 15148. The strains were obligately anaerobic, non-pigmented, non-spore-forming, non-motile, Gram-stain-negative rods. Growth of the strains was inhibited on medium containing 20 % bile. The two strains produced butyric and isobutyric acids as the end products from glucose, as has been observed in the other two species of the genus Butyricimonas. The major cellular fatty acid of strains 180-3 and 214-4 was iso-C. The major menaquinone of the isolates was MK-10 (>50 %). Strains 180-3 and 214-4 have DNA G+C contents of 45 mol%. On the basis of these data, strains 180-3 and 214-4 represent two novel species of the genus , for which the names sp. nov. and sp. nov., respectively, are proposed. The type strains of and are 180-3 ( = JCM 18676 = CCUG 65562) and 214-4 ( = JCM 18677 = CCUG 65563), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.065318-0
2014-09-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/9/2992.html?itemId=/content/journal/ijsem/10.1099/ijs.0.065318-0&mimeType=html&fmt=ahah

References

  1. Eckburg P. B., Bik E. M., Bernstein C. N., Purdom E., Dethlefsen L., Sargent M., Gill S. R., Nelson K. E., Relman D. A.. ( 2005;). Diversity of the human intestinal microbial flora. . Science 308:, 1635–1638. [CrossRef][PubMed]
    [Google Scholar]
  2. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid – deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  3. Felsenstein J.. ( 1985;). Confidence limits of phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  4. Holdeman L. V., Cato E. P., Moore W. E. C.. ( 1977;). Anaerobe Laboratory Manual, , 4th edn.. Blacksburg, VA:: Virginia Polytechnic Institute and State University;.
    [Google Scholar]
  5. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  6. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  7. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E.. ( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. . Int J Syst Bacteriol 38:, 358–361. [CrossRef]
    [Google Scholar]
  8. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). clustal w and clustal_x version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  9. Li M., Wang B., Zhang M., Rantalainen M., Wang S., Zhou H., Zhang Y., Shen J., Pang X.. & other authors ( 2008;). Symbiotic gut microbes modulate human metabolic phenotypes. . Proc Natl Acad Sci U S A 105:, 2117–2122. [CrossRef][PubMed]
    [Google Scholar]
  10. McClung L. S., Lindberg R. B.. ( 1957;). The study of obligately anaerobic bacteria. . In Manual of Microbiological Methods, pp. 120–139. Edited by American Society for Microbiology. Committee on Bacteriological Technic. New York:: McGraw-Hill;.
    [Google Scholar]
  11. Miller L. T.. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16:, 584–586.[PubMed]
    [Google Scholar]
  12. Qin J., Li R., Raes J., Arumugam M., Burgdorf K. S., Manichanh C., Nielsen T., Pons N., Levenez F.. & other authors ( 2010;). A human gut microbial gene catalogue established by metagenomic sequencing. . Nature 464:, 59–65. [CrossRef][PubMed]
    [Google Scholar]
  13. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  14. Sakamoto M., Ohkuma M.. ( 2010;). Usefulness of the hsp60 gene for the identification and classification of Gram-negative anaerobic rods. . J Med Microbiol 59:, 1293–1302. [CrossRef][PubMed]
    [Google Scholar]
  15. Sakamoto M., Ohkuma M.. ( 2011;). Identification and classification of the genus Bacteroides by multilocus sequence analysis. . Microbiology 157:, 3388–3397. [CrossRef][PubMed]
    [Google Scholar]
  16. Sakamoto M., Suzuki M., Umeda M., Ishikawa I., Benno Y.. ( 2002;). Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov.. Int J Syst Evol Microbiol 52:, 841–849. [CrossRef][PubMed]
    [Google Scholar]
  17. Sakamoto M., Huang Y., Umeda M., Ishikawa I., Benno Y.. ( 2005;). Prevotella multiformis sp. nov., isolated from human subgingival plaque. . Int J Syst Evol Microbiol 55:, 815–819. [CrossRef][PubMed]
    [Google Scholar]
  18. Sakamoto M., Takagaki A., Matsumoto K., Kato Y., Goto K., Benno Y.. ( 2009;). Butyricimonas synergistica gen. nov., sp. nov. and Butyricimonas virosa sp. nov., butyric acid-producing bacteria in the family ‘Porphyromonadaceae’ isolated from rat faeces. . Int J Syst Evol Microbiol 59:, 1748–1753. [CrossRef][PubMed]
    [Google Scholar]
  19. Sakamoto M., Suzuki N., Benno Y.. ( 2010;). hsp60 and 16S rRNA gene sequence relationships among species of the genus Bacteroides with the finding that Bacteroides suis and Bacteroides tectus are heterotypic synonyms of Bacteroides pyogenes. . Int J Syst Evol Microbiol 60:, 2984–2990. [CrossRef][PubMed]
    [Google Scholar]
  20. Shah H. N.. ( 1992;). The genus Bacteroides and related taxa. . In The Prokaryotes, , 2nd edn., pp. 3593–3607. Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H... New York:: Springer;. [CrossRef]
    [Google Scholar]
  21. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.065318-0
Loading
/content/journal/ijsem/10.1099/ijs.0.065318-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error