1887

Abstract

A novel mesophilic, strictly hydrogen-oxidizing, sulfur-, nitrate- and thiosulfate-reducing bacterium, designated strain Monchim33, was isolated from a deep-sea hydrothermal vent chimney at the Central Indian Ridge. The non-motile, rod-shaped cells were Gram-stain-negative and non-sporulating. Growth was observed between 15 and 37 °C (optimum 33 °C; 3.2 h doubling time) and between pH 5.4 and 8.6 (optimum pH 6.0). The isolate was a strictly anaerobic chemolithoautotroph capable of using molecular hydrogen as the sole energy source and carbon dioxide as the sole carbon source. The G+C content of the genomic DNA was 42.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the novel isolate belonged to the genus and was closely related to sp. NBC37-1 and 42BK (95.6 and 95.4 % similarity, respectively). DNA–DNA hybridization demonstrated that the novel isolate could be differentiated genotypically from sp. NBC37-1 and . On the basis of the molecular and physiological traits of the new isolate, the name sp. nov. is proposed, with the type strain Monchim33 ( = JCM 19824 = DSM 27205).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.065094-0
2014-09-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/9/3195.html?itemId=/content/journal/ijsem/10.1099/ijs.0.065094-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Baross J. A.. ( 1995;). Isolation, growth, and maintenance of hyperthermophiles. . In Archaea, a Laboratory Manual. Thermophiles, pp. 15–23. Edited by Robb F. T., Place A. R... Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  3. Campbell B. J., Engel A. S., Porter M. L., Takai K.. ( 2006;). The versatile ϵ-proteobacteria: key players in sulphidic habitats. . Nat Rev Microbiol 4:, 458–468. [CrossRef][PubMed]
    [Google Scholar]
  4. Cary S. C., Cottrell M. T., Stein J. L., Camacho F., Desbruyeres D.. ( 1997;). Molecular identification and localization of filamentous symbiotic bacteria associated with the hydrothermal vent annelid Alvinella pompejana. . Appl Environ Microbiol 63:, 1124–1130.[PubMed]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  6. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  7. Fisher C. R., Takai K., Le Bris N.. ( 2007;). Hydrothermal vent ecosystems. . Oceanography 20:, 14–23. [CrossRef]
    [Google Scholar]
  8. Garrity G., Bell J., Lilburn T.. ( 2005;). Class V. Epsilonproteobacteria class. nov. . In Bergey's Manual of Systematic Bacteriology, , 2nd edn., vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria), p. 1145–1194. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M... New York:: Springer;.
    [Google Scholar]
  9. Goffredi S. K., Warén A., Orphan V. J., Van Dover C. L., Vrijenhoek R. C.. ( 2004;). Novel forms of structural integration between microbes and a hydrothermal vent gastropod from the Indian Ocean. . Appl Environ Microbiol 70:, 3082–3090. [CrossRef][PubMed]
    [Google Scholar]
  10. Haddad A., Camacho F., Durand P., Cary S. C.. ( 1995;). Phylogenetic characterization of the epibiotic bacteria associated with the hydrothermal vent polychaete Alvinella pompejana. . Appl Environ Microbiol 61:, 1679–1687.[PubMed]
    [Google Scholar]
  11. Inagaki F., Takai K., Kobayashi H., Nealson K. H., Horikoshi K.. ( 2003;). Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing ϵ-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. . Int J Syst Evol Microbiol 53:, 1801–1805. [CrossRef][PubMed]
    [Google Scholar]
  12. Inagaki F., Takai K., Nealson K. H., Horikoshi K.. ( 2004;). Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the ϵ-Proteobacteria isolated from Okinawa Trough hydrothermal sediments. . Int J Syst Evol Microbiol 54:, 1477–1482. [CrossRef][PubMed]
    [Google Scholar]
  13. Izumi H., Nunoura T., Miyazaki M., Mino S., Toki T., Takai K., Sako Y., Sawabe T., Nakagawa S.. ( 2012;). Thermotomaculum hydrothermale gen. nov., sp. nov., a novel heterotrophic thermophile within the phylum Acidobacteria from a deep-sea hydrothermal vent chimney in the Southern Okinawa Trough. . Extremophiles 16:, 245–253. [CrossRef][PubMed]
    [Google Scholar]
  14. Jannasch H. W.. ( 1985;). Review lecture: the chemosynthetic support of life and the microbial diversity at deep-sea hydrothermal vents. . Proc R Soc Lond B Biol Sci 225:, 277–297. [CrossRef]
    [Google Scholar]
  15. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  16. Lane D.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  17. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  18. Makita H., Nakagawa S., Miyazaki M., Nakamura K., Inagaki F., Takai K.. ( 2012;). Thiofractor thiocaminus gen. nov., sp. nov., a novel hydrogen-oxidizing, sulfur-reducing epsilonproteobacterium isolated from a deep-sea hydrothermal vent chimney in the Nikko Seamount field of the northern Mariana Arc. . Arch Microbiol 194:, 785–794. [CrossRef][PubMed]
    [Google Scholar]
  19. Minnikin D., O’Donnell A., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  20. Nakagawa S., Inagaki F., Takai K., Horikoshi K., Sako Y.. ( 2005a;). Thioreductor micantisoli gen. nov., sp. nov., a novel mesophilic, sulfur-reducing chemolithoautotroph within the ϵ-Proteobacteria isolated from hydrothermal sediments in the Mid-Okinawa Trough. . Int J Syst Evol Microbiol 55:, 599–605. [CrossRef][PubMed]
    [Google Scholar]
  21. Nakagawa S., Takai K., Inagaki F., Horikoshi K., Sako Y.. ( 2005b;). Nitratiruptor tergarcus gen. nov., sp. nov. and Nitratifractor salsuginis gen. nov., sp. nov., nitrate-reducing chemolithoautotrophs of the ϵ-Proteobacteria isolated from a deep-sea hydrothermal system in the Mid-Okinawa Trough. . Int J Syst Evol Microbiol 55:, 925–933. [CrossRef][PubMed]
    [Google Scholar]
  22. Nakagawa S., Takaki Y., Shimamura S., Reysenbach A. L., Takai K., Horikoshi K.. ( 2007;). Deep-sea vent ϵ-proteobacterial genomes provide insights into emergence of pathogens. . Proc Natl Acad Sci U S A 104:, 12146–12150. [CrossRef][PubMed]
    [Google Scholar]
  23. Petersen J. M., Zielinski F. U., Pape T., Seifert R., Moraru C., Amann R., Hourdez S., Girguis P. R., Wankel S. D.. & other authors ( 2011;). Hydrogen is an energy source for hydrothermal vent symbioses. . Nature 476:, 176–180. [CrossRef][PubMed]
    [Google Scholar]
  24. Polz M. F., Cavanaugh C. M.. ( 1995;). Dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. . Proc Natl Acad Sci U S A 92:, 7232–7236. [CrossRef][PubMed]
    [Google Scholar]
  25. Porter K., Feig Y.. ( 1980;). The use of DAPI for identifying and counting aquatic microflora. . Limnol Oceanogr 25:, 943–948. [CrossRef]
    [Google Scholar]
  26. Sako Y., Takai K., Ishida Y., Uchida A., Katayama Y.. ( 1996;). Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. . Int J Syst Bacteriol 46:, 1099–1104. [CrossRef][PubMed]
    [Google Scholar]
  27. Sambrook J., Fritsch E., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, , 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  28. Sievert S., Vetriani C.. ( 2012;). Chemoautotrophy at deep-sea vents. . Oceanography 25:, 218–233. [CrossRef]
    [Google Scholar]
  29. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  30. Suzuki Y., Sasaki T., Suzuki M., Tsuchida S., Nealson K. H., Horikoshi K.. ( 2005;). Molecular phylogenetic and isotopic evidence of two lineages of chemoautotrophic endosymbionts distinct at the subdivision level harbored in one host-animal type: the genus Alviniconcha (Gastropoda: Provannidae). . FEMS Microbiol Lett 249:, 105–112. [CrossRef][PubMed]
    [Google Scholar]
  31. Takai K., Inagaki F., Nakagawa S., Hirayama H., Nunoura T., Sako Y., Nealson K. H., Horikoshi K.. ( 2003;). Isolation and phylogenetic diversity of members of previously uncultivated ϵ-Proteobacteria in deep-sea hydrothermal fields. . FEMS Microbiol Lett 218:, 167–174.[PubMed]
    [Google Scholar]
  32. Takai K., Suzuki M., Nakagawa S., Miyazaki M., Suzuki Y., Inagaki F., Horikoshi K.. ( 2006;). Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emended description of the genus Sulfurimonas. . Int J Syst Evol Microbiol 56:, 1725–1733. [CrossRef][PubMed]
    [Google Scholar]
  33. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 15–23. [CrossRef]
    [Google Scholar]
  34. Tamaoka J., Katayama‐Fujimura Y., Kuraishi H.. ( 1983;). Analysis of bacterial menaquinone mixtures by high performance lipid chromatography. . J Appl Microbiol 54:, 31–36.
    [Google Scholar]
  35. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  36. Urakawa H., Dubilier N., Fujiwara Y., Cunningham D. E., Kojima S., Stahl D. A.. ( 2005;). Hydrothermal vent gastropods from the same family (Provannidae) harbour ϵ- and γ-proteobacterial endosymbionts. . Environ Microbiol 7:, 750–754. [CrossRef][PubMed]
    [Google Scholar]
  37. Watsuji T. O., Nakagawa S., Tsuchida S., Toki T., Hirota A., Tsunogai U., Takai K.. ( 2010;). Diversity and function of epibiotic microbial communities on the galatheid crab, Shinkaia crosnieri. . Microbes Environ 25:, 288–294. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.065094-0
Loading
/content/journal/ijsem/10.1099/ijs.0.065094-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error