1887

Abstract

A Gram-stain-positive, aerobic, non-motile, non-spore-forming, cocci-shaped actinobacterium, designated strain EBR4-1-2, was isolated from a biofilm reactor in Korea. Comparative 16S rRNA gene sequence studies showed the isolate was clearly affiliated with the class , and was related most closely to H5, showing 98.9 % similarity. Cells of strain EBR4-1-2 formed yellow colonies on R2A agar, contained MK-9(H) as the predominant menaquinone, and included Cω9, C, Cω9 and C as the major fatty acids. The cell-wall peptidoglycan type was A5α (-Lys–-Ala–-Lys–-Glu). The G+C content of the genomic DNA of strain EBR4-1-2 was 65.6 mol%. Thus, the combined genotypic and phenotypic data supported the conclusion that strain EBR4-1-2 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is EBR4-1-2 ( = KCTC 33148 = JCM 19016).

Funding
This study was supported by the:
  • Ministry of Science, ICT, and Future Planning (Award 2010-0029719)
  • KRIBB (Korea Research Institute of Bioscience and Biotechnology) Research Initiative Program
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.064907-0
2014-09-01
2021-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/9/3293.html?itemId=/content/journal/ijsem/10.1099/ijs.0.064907-0&mimeType=html&fmt=ahah

References

  1. Bates R. G., Bower V. E. ( 1956 ). Alkaline solutions for pH control. . Anal Chem 28, 13221324. [View Article]
    [Google Scholar]
  2. Du Z.-J., Miao T.-T., Lin X.-Z., Liu Q.-Q., Chen G.-J. ( 2013 ). Flaviflexus huanghaiensis gen. nov., sp. nov., an actinobacterium of the family Actinomycetaceae . . Int J Syst Evol Microbiol 63, 18631867. [View Article] [PubMed]
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. ( 1989 ). Fluorometric deoxyribonucleic acid- deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39, 224229. [View Article]
    [Google Scholar]
  4. Felsenstein J. ( 1981 ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17, 368376. [View Article] [PubMed]
    [Google Scholar]
  5. Felsenstein J. ( 1985 ). Confidence limit on phylogenies: an approach using the bootstrap. . Evolution 39, 783791. [View Article]
    [Google Scholar]
  6. Fitch W. M. ( 1971 ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20, 406416. [View Article]
    [Google Scholar]
  7. Gomori G. ( 1955 ). Preparation of buffers for use in enzyme studies. . Methods Enzymol 1, 138146. [View Article]
    [Google Scholar]
  8. Hall T. A. ( 1999 ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucl Acids Symp Ser 41, 9598.
    [Google Scholar]
  9. Komagata K., Suzuki K.-I. ( 1987 ). Lipid and cell wall analysis in bacterial systematics. . Methods Microbiol 19, 161207. [View Article]
    [Google Scholar]
  10. Lane D. J. ( 1991 ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115175. Edited by Stackebrandt E., Goodfellow M. . Chichester:: Wiley;.
    [Google Scholar]
  11. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  12. Sasser M. ( 1990 ). Identification of bacteria by gas chromatography of cellular fatty acids. , MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  13. Schleifer K. H., Kandler O. ( 1972 ). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36, 407477.[PubMed]
    [Google Scholar]
  14. Tamaoka J., Komagata K. ( 1984 ). Determination of DNA base composition by reversed-phased high-performance liquid chromatography. . FEMS Microbiol Lett 25, 125128. [View Article]
    [Google Scholar]
  15. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [View Article] [PubMed]
    [Google Scholar]
  16. Tarrand J. J., Gröschel D. H. M. ( 1982 ). Rapid, modified oxidase test for oxidase-variable bacterial isolates. . J Clin Microbiol 16, 772774.[PubMed]
    [Google Scholar]
  17. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. ( 1997 ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25, 48764882. [View Article] [PubMed]
    [Google Scholar]
  18. Tindall B. J. ( 1990a ). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13, 128130. [View Article]
    [Google Scholar]
  19. Tindall B. J. ( 1990b ). Lipid composition of Halobacterium lacusprofundi . . FEMS Microbiol Lett 66, 199202. [View Article]
    [Google Scholar]
  20. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. & other authors ( 1987 ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37, 463464. [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.064907-0
Loading
/content/journal/ijsem/10.1099/ijs.0.064907-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error