1887

Abstract

A Gram-stain-positive, aerobic, non-motile, non-spore-forming, cocci-shaped actinobacterium, designated strain EBR4-1-2, was isolated from a biofilm reactor in Korea. Comparative 16S rRNA gene sequence studies showed the isolate was clearly affiliated with the class , and was related most closely to H5, showing 98.9 % similarity. Cells of strain EBR4-1-2 formed yellow colonies on R2A agar, contained MK-9(H) as the predominant menaquinone, and included Cω9, C, Cω9 and C as the major fatty acids. The cell-wall peptidoglycan type was A5α (-Lys–-Ala–-Lys–-Glu). The G+C content of the genomic DNA of strain EBR4-1-2 was 65.6 mol%. Thus, the combined genotypic and phenotypic data supported the conclusion that strain EBR4-1-2 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is EBR4-1-2 ( = KCTC 33148 = JCM 19016).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.064907-0
2014-09-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/9/3293.html?itemId=/content/journal/ijsem/10.1099/ijs.0.064907-0&mimeType=html&fmt=ahah

References

  1. Bates R. G., Bower V. E.. ( 1956;). Alkaline solutions for pH control. . Anal Chem 28:, 1322–1324. [CrossRef]
    [Google Scholar]
  2. Du Z.-J., Miao T.-T., Lin X.-Z., Liu Q.-Q., Chen G.-J.. ( 2013;). Flaviflexus huanghaiensis gen. nov., sp. nov., an actinobacterium of the family Actinomycetaceae. . Int J Syst Evol Microbiol 63:, 1863–1867. [CrossRef][PubMed]
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid- deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  4. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limit on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  6. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  7. Gomori G.. ( 1955;). Preparation of buffers for use in enzyme studies. . Methods Enzymol 1:, 138–146. [CrossRef]
    [Google Scholar]
  8. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucl Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  9. Komagata K., Suzuki K.-I.. ( 1987;). Lipid and cell wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  10. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  11. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  12. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. , MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
  13. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  14. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phased high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  15. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  16. Tarrand J. J., Gröschel D. H. M.. ( 1982;). Rapid, modified oxidase test for oxidase-variable bacterial isolates. . J Clin Microbiol 16:, 772–774.[PubMed]
    [Google Scholar]
  17. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  18. Tindall B. J.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  19. Tindall B. J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  20. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.064907-0
Loading
/content/journal/ijsem/10.1099/ijs.0.064907-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error