1887

Abstract

Strains LMG 27428 and LMG 27427 were isolated from the caecal content of a chicken and produced butyric, lactic and formic acids as major metabolic end products. The genomic DNA G+C contents of strains LMG 27428 and LMG 27427 were 40.4 and 38.8 mol%. On the basis of 16S rRNA gene sequence similarity, both strains were most closely related to the generically misclassified ATCC 29734. Strain LMG 27428 could be distinguished from ATCC 29734 based on production of more lactic acid and less formic acid in M2GSC medium, a higher DNA G+C content and the absence of activities of acid phosphatase and leucine, arginine, leucyl glycine, pyroglutamic acid, glycine and histidine arylamidases, while strain LMG 27428 was biochemically indistinguishable from ATCC 29734. The novel genus gen. nov. within the family is proposed to accommodate strains LMG 27428 and LMG 27427. Strain LMG 27428 ( = DSM 26963) is the type strain of sp. nov., and strain LMG 27427 ( = DSM 26962) is a strain of comb. nov. (type strain LMG 17756 = ATCC 29734 = DSM 20574). Furthermore, the nearest phylogenetic neighbours of the genus are the generically misclassified DSM 3983 (94.4 % 16S rRNA gene sequence similarity to strain LMG 27428) and DSM 3989 (92.7 % 16S rRNA gene sequence similarity to strain LMG 27428). We present genotypic and phenotypic data that allow the differentiation of each of these taxa and propose to reclassify these generically misnamed species of the genus formally as gen. nov., comb. nov. and gen. nov., comb. nov., respectively. The type strain of is DSM 3983 = ATCC 27803 = JCM 10261 and that of is DSM 3989 = ATCC 27806 = CCUG 28091.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.064626-0
2014-11-01
2019-11-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/11/3877.html?itemId=/content/journal/ijsem/10.1099/ijs.0.064626-0&mimeType=html&fmt=ahah

References

  1. Barnes E. M., Impey C. S., Stevens B. J., Peel J. L.. ( 1977;). Streptococcus pleomorphus sp. nov.: an anaerobic streptococcus isolated mainly from the caeca of birds. . J Gen Microbiol 102:, 45–53. [CrossRef][PubMed]
    [Google Scholar]
  2. Cato E. P., Salmon C. W., Holdeman L. V.. ( 1974;). Eubacterium cylindroides (Rocchi) Holdeman and Moore: emended description and designation of neotype strain. . Int J Syst Bacteriol 24:, 256–259. [CrossRef]
    [Google Scholar]
  3. Coenye T., Falsen E., Vancanneyt M., Hoste B., Govan J. R. W., Kersters K., Vandamme P.. ( 1999;). Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov.. Int J Syst Bacteriol 49:, 405–413. [CrossRef][PubMed]
    [Google Scholar]
  4. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A.. ( 1994;). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. . Int J Syst Bacteriol 44:, 812–826. [CrossRef][PubMed]
    [Google Scholar]
  5. De Baere S., Eeckhaut V., Steppe M., De Maesschalck C., De Backer P., Van Immerseel F., Croubels S.. ( 2013;). Development of a HPLC-UV method for the quantitative determination of four short-chain fatty acids and lactic acid produced by intestinal bacteria during in vitro fermentation. . J Pharm Biomed Anal 80:, 107–115. [CrossRef][PubMed]
    [Google Scholar]
  6. Edgar R. C.. ( 2004a;). muscle: a multiple sequence alignment method with reduced time and space complexity. . BMC Bioinformatics 5:, 113. [CrossRef][PubMed]
    [Google Scholar]
  7. Edgar R. C.. ( 2004b;). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32:, 1792–1797. [CrossRef][PubMed]
    [Google Scholar]
  8. Eeckhaut V., Van Immerseel F., Croubels S., De Baere S., Haesebrouck F., Ducatelle R., Louis P., Vandamme P.. ( 2011;). Butyrate production in phylogenetically diverse firmicutes isolated from the chicken caecum. . Microb Biotechnol 4:, 503–512. [CrossRef][PubMed]
    [Google Scholar]
  9. Eggerth A. H.. ( 1935;). The Gram-positive non-spore-bearing anaerobic bacilli of human feces. . J Bacteriol 30:, 277–299.[PubMed]
    [Google Scholar]
  10. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane-filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  11. Goh S. H., Potter S., Wood J. O., Hemmingsen S. M., Reynolds R. P., Chow A. W.. ( 1996;). HSP60 gene sequences as universal targets for microbial species identification: studies with coagulase-negative staphylococci. . J Clin Microbiol 34:, 818–823.[PubMed]
    [Google Scholar]
  12. Hill J. E., Penny S. L., Crowell K. G., Goh S. H., Hemmingsen S. M.. ( 2004;). cpnDB: a chaperonin sequence database. . Genome Res 14:, 1669–1675. [CrossRef][PubMed]
    [Google Scholar]
  13. Holdeman L. V., Moore W. E. C.. ( 1970;). Eubacterium. . In Outline of Clinical Methods in Anaerobic Bacteriology, , 2nd revision., pp. 23–30. Edited by Cato E. P., Cummins C. S., Holdeman L. V., Johnson J. L., Moore W. E. C., Smibert R. M., Smith L. D. S... Blacksburg, VA:: Virginia Polytechnic Institute Anaerobe Laboratory;.
    [Google Scholar]
  14. Kageyama A., Benno Y., Nakase T.. ( 1999;). Phylogenetic and phenotypic evidence for the transfer of Eubacterium aerofaciens to the genus Collinsella as Collinsella aerofaciens gen. nov., comb. nov.. Int J Syst Bacteriol 49:, 557–565. [CrossRef][PubMed]
    [Google Scholar]
  15. Kawamura Y., Hou X. G., Sultana F., Miura H., Ezaki T.. ( 1995;). Determination of 16S rRNA sequences of Streptococcus mitis and Streptococcus gordonii and phylogenetic relationships among members of the genus Streptococcus. . Int J Syst Bacteriol 45:, 406–408. [CrossRef][PubMed]
    [Google Scholar]
  16. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  17. Ley R. E., Hamady M., Lozupone C., Turnbaugh P. J., Ramey R. R., Bircher J. S., Schlegel M. L., Tucker T. A., Schrenzel M. D.. & other authors ( 2008;). Evolution of mammals and their gut microbes. . Science 320:, 1647–1651. [CrossRef][PubMed]
    [Google Scholar]
  18. Ludwig W., Weizenegger M., Kilpperbalz R., Schleifer K. H.. ( 1988;). Phylogenetic relationships of anaerobic streptococci. . Int J Syst Bacteriol 38:, 15–18. [CrossRef]
    [Google Scholar]
  19. Mesbah M., Whitman W. B.. ( 1989;). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. . J Chromatogr A 479:, 297–306. [CrossRef][PubMed]
    [Google Scholar]
  20. Moore W. E., Holdeman L. V.. ( 1974;). Human fecal flora: the normal flora of 20 Japanese-Hawaiians. . Appl Microbiol 27:, 961–979.[PubMed]
    [Google Scholar]
  21. Moore W. E. C., Johnson J. L., Holdeman L. V.. ( 1976;). Emendation of Bacteroidaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species in the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and Ruminococcus. . Int J Syst Bacteriol 26:, 238–252. [CrossRef]
    [Google Scholar]
  22. Nakazawa F., Hoshino E.. ( 1994;). Genetic relationships among Eubacterium species. . Int J Syst Bacteriol 44:, 787–790. [CrossRef]
    [Google Scholar]
  23. Pitcher D. G., Saunders N. A., Owen R. J.. ( 1989;). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. . Lett Appl Microbiol 8:, 151–156. [CrossRef]
    [Google Scholar]
  24. Prévot A. R.. ( 1938;). Etudes de systematique bactérienne. III. Invalidité du genre Bacteroides Castellani et Chalmers. Démembrement et réclassification. . Ann Inst Pasteur (Paris) 60:, 292 (in French).
    [Google Scholar]
  25. Rocchi G.. ( 1908;). Lo stato attuale delle nostre cognizioni sui germi anaerobi. . Bull Sci Med (Bologna) 8:, 457–479 (in Italian).
    [Google Scholar]
  26. Stanley D., Geier M. S., Denman S. E., Haring V. R., Crowley T. M., Hughes R. J., Moore R. J.. ( 2013;). Identification of chicken intestinal microbiota correlated with the efficiency of energy extraction from feed. . Vet Microbiol 164:, 85–92. [CrossRef][PubMed]
    [Google Scholar]
  27. Tamura K., Nei M.. ( 1993;). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. . Mol Biol Evol 10:, 512–526.[PubMed]
    [Google Scholar]
  28. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef][PubMed]
    [Google Scholar]
  29. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  30. Willems A., Collins M. D.. ( 1996;). Phylogenetic relationships of the genera Acetobacterium and Eubacterium sensu stricto and reclassification of Eubacterium alactolyticum as Pseudoramibacter alactolyticus gen. nov., comb. nov.. Int J Syst Bacteriol 46:, 1083–1087. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.064626-0
Loading
/content/journal/ijsem/10.1099/ijs.0.064626-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error