1887

Abstract

Nitrogen (N), the nutrient most required for plant growth, is key for good yield of agriculturally important crops. Common bean ( L.) can benefit from bacteria collectively called rhizobia, which are capable of fixing atmospheric nitrogen (N) in root nodules and supplying it to the plant. Common bean is amongst the most promiscuous legume hosts; several described species, in addition to putative novel ones have been reported as able to nodulate this legume, although not always effectively in terms of fixing N. In this study, we present data indicating that Brazilian strains PRF 35, PRF 54, CPAO 1135 and H 52, currently classified as , represent a novel species symbiont of common bean. Morphological, physiological and biochemical properties differentiate these strains from other species of the genus , as do BOX-PCR profiles (less than 60 % similarity), multilocus sequence analysis with , and (less than 96.4 % sequence similarity), DNA–DNA hybridization (less than 50 % DNA–DNA relatedness), and average nucleotide identity of whole genomes (less than 92.8.%). The novel species is effective in nodulating and fixing N with , and . We propose the name sp. nov. for this novel taxon, with strain PRF 35 ( = CNPSo 120 = LMG 27577 = IPR- 1249) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.064543-0
2014-09-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/9/3222.html?itemId=/content/journal/ijsem/10.1099/ijs.0.064543-0&mimeType=html&fmt=ahah

References

  1. Cardoso J. D., Hungria M., Andrade D. S.. ( 2012;). Polyphasic approach for the characterization of rhizobial symbionts effective in fixing N(2) with common bean (Phaseolus vulgaris L.). . Appl Microbiol Biotechnol 93:, 2035–2049. [CrossRef][PubMed]
    [Google Scholar]
  2. Chen W.-X., Tan Z.-Y., Gao J.-L., Li Y., Wang E.-T.. ( 1997;). Rhizobium hainanense sp. nov., isolated from tropical legumes. . Int J Syst Bacteriol 47:, 870–873. [CrossRef][PubMed]
    [Google Scholar]
  3. Chueire L. M. O., Bangel E. V., Mostasso F. L., Campo R. J., Pedrosa F. O., Hungria M.. ( 2003;). Classificação taxonômica das estirpes de rizóbio recomendadas para as culturas da soja e do feijoeiro baseada no seqüenciamento do gene 16S rRNA. . Rev Bras Ci Solo 27:, 833–840. [CrossRef]
    [Google Scholar]
  4. Coenye T., Vandamme P., Govan J. R. W., LiPuma J. J.. ( 2001;). Taxonomy and identification of the Burkholderia cepacia complex. . J Clin Microbiol 39:, 3427–3436. [CrossRef][PubMed]
    [Google Scholar]
  5. Dall’Agnol R. F., Ribeiro R. A., Ormeño-Orrillo E., Rogel M. A., Delamuta J. R., Andrade D. S., Martínez-Romero E., Hungria M.. ( 2013;). Rhizobium freirei sp. nov., a symbiont of Phaseolus vulgaris that is very effective at fixing nitrogen. . Int J Syst Evol Microbiol 63:, 4167–4173. [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  7. Gu C. T., Wang E. T., Tian C. F., Han T. X., Chen W. F., Sui X. H., Chen W. X.. ( 2008;). Rhizobium miluonense sp. nov., a symbiotic bacterium isolated from Lespedeza root nodules. . Int J Syst Evol Microbiol 58:, 1364–1368. [CrossRef][PubMed]
    [Google Scholar]
  8. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  9. Han T. X., Wang E. T., Wu L. J., Chen W. F., Gu J. G., Gu C. T., Tian C. F., Chen W. X.. ( 2008;). Rhizobium multihospitium sp. nov., isolated from multiple legume species native of Xinjiang, China. . Int J Syst Evol Microbiol 58:, 1693–1699. [CrossRef][PubMed]
    [Google Scholar]
  10. Hungria M., Andrade D. S., Chueire L. M. O., Probanza A., Guttierrez-Mañero F. J., Megías M.. ( 2000;). Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. . Soil Biol Biochem 32:, 1515–1528. [CrossRef]
    [Google Scholar]
  11. Hungria M., Chueire L. M. O., Coca R. G., Megías M.. ( 2001;). Preliminary characterization of fast growing rhizobial strains isolated from soyabean nodules in Brazil. . Soil Biol Biochem 33:, 1349–1361. [CrossRef]
    [Google Scholar]
  12. Hungria M., Campo R. J., Mendes I. C.. ( 2003;). Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains. . Biol Fert Soils 39:, 88–93. [CrossRef]
    [Google Scholar]
  13. Jordan D. C.. ( 1984;). Family III. Rhizobiaceae Conn 1938. . In Bergey’s Manual of Systematic Bacteriology, vol. 1, pp. 234–235. Edited by Krieg N. R., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  14. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  15. Konstantinidis K. T., Ramette A., Tiedje J. M.. ( 2006;). Toward a more robust assessment of intraspecies diversity, using fewer genetic markers. . Appl Environ Microbiol 72:, 7286–7293. [CrossRef][PubMed]
    [Google Scholar]
  16. Martens M., Delaere M., Coopman R., De Vos P., Gillis M., Willems A.. ( 2007;). Multilocus sequence analysis of Ensifer and related taxa. . Int J Syst Evol Microbiol 57:, 489–503. [CrossRef][PubMed]
    [Google Scholar]
  17. Martínez-Romero E., Segovia L., Mercante F. M., Franco A. A., Graham P., Pardo M. A.. ( 1991;). Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. . Int J Syst Bacteriol 41:, 417–426. [CrossRef][PubMed]
    [Google Scholar]
  18. Menna P., Barcellos F. G., Hungria M.. ( 2009;). Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of the 16S rRNA gene, ITS region and glnII, recA, atpD and dnaK genes. . Int J Syst Evol Microbiol 59:, 2934–2950. [CrossRef][PubMed]
    [Google Scholar]
  19. Mostasso L., Mostasso F. L., Dias B. G., Vargas M. A. T., Hungria M.. ( 2002;). Selection of bean (Phaseolus vulgaris L.) rhizobial strains for the Brazilian Cerrados. . Field Crops Res 73:, 121–132. [CrossRef]
    [Google Scholar]
  20. Mousavi S. A., Österman J., Wahlberg N., Nesme X., Lavire C., Vial L., Paulin L., de Lajudie P., Lindström K.. ( 2014;). Phylogeny of the Rhizobium-Allorhizobium-Agrobacterium clade supports the delineation of Neorhizobium gen. nov.. Syst Appl Microbiol 37:, 208–215. [CrossRef][PubMed]
    [Google Scholar]
  21. Ormeño-Orrillo E., Menna P., Almeida L. G. P., Ollero F. J., Nicolás M. F., Pains Rodrigues E., Shigueyoshi Nakatani A., Silva Batista J. S., Oliveira Chueire L. M.. & other authors ( 2012;). Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). . BMC Genomics 13:, 735. [CrossRef][PubMed]
    [Google Scholar]
  22. Ormeño-Orrillo E., Hungria M., Martínez-Romero E.. ( 2013;). Dinitrogen-fixing prokaryotes. . In The Prokaryotes: Prokaryotic Physiology and Biochemistry, pp. 427–451. Edited by Rosenberg E., DeLong E. F., Lory S., Stackebrandt E., Thompson F... Berlin, Heidelberg:: Springer;. [CrossRef]
    [Google Scholar]
  23. Pinto F. G. S., Hungria M., Mercante F. M.. ( 2007;). Polyphasic characterization of Brazilian Rhizobium tropici strains effective in fixing N2 with common bean (Phaseolus vulgaris L.). . Soil Biol Biochem 39:, 1851–1864. [CrossRef]
    [Google Scholar]
  24. Ribeiro R. A., Barcellos F. G., Thompson F. L., Hungria M.. ( 2009;). Multilocus sequence analysis of Brazilian Rhizobium microsymbionts of common bean (Phaseolus vulgaris L.) reveals unexpected taxonomic diversity. . Res Microbiol 160:, 297–306. [CrossRef][PubMed]
    [Google Scholar]
  25. Ribeiro R. A., Rogel M. A., López-López A., Ormeño-Orrillo E., Barcellos F. G., Martínez J., Thompson F. L., Martínez-Romero E., Hungria M.. ( 2012;). Reclassification of Rhizobium tropici type A strains as Rhizobium leucaenae sp. nov.. Int J Syst Evol Microbiol 62:, 1179–1184. [CrossRef][PubMed]
    [Google Scholar]
  26. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106:, 19126–19131. [CrossRef][PubMed]
    [Google Scholar]
  27. Rincón-Rosales R., Villalobos-Escobedo J. M., Rogel M. A., Martínez J., Ormeño-Orrillo E., Martínez-Romero E.. ( 2013;). Rhizobium calliandrae sp. nov., Rhizobium mayense sp. nov. and Rhizobium jaguaris sp. nov., rhizobial species nodulating the medicinal legume Calliandra grandiflora. . Int J Syst Evol Microbiol 63:, 3423–3429. [CrossRef][PubMed]
    [Google Scholar]
  28. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  29. Slater S. C., Goldman B. S., Goodner B., Setubal J. C., Farrand S. K., Nester E. W., Burr T. J., Banta L., Dickerman A. W.. & other authors ( 2009;). Genome sequences of three agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria. . J Bacteriol 191:, 2501–2511. [CrossRef][PubMed]
    [Google Scholar]
  30. Tighe S. W., de Lajudie P., Dipietro K., Lindström K., Nick G., Jarvis B. D. W.. ( 2000;). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. . Int J Syst Evol Microbiol 50:, 787–801. [CrossRef][PubMed]
    [Google Scholar]
  31. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  32. Valverde A., Igual J. M., Peix A., Cervantes E., Velázquez E.. ( 2006;). Rhizobium lusitanum sp. nov. a bacterium that nodulates Phaseolus vulgaris. . Int J Syst Evol Microbiol 56:, 2631–2637. [CrossRef][PubMed]
    [Google Scholar]
  33. Vandamme P., Pot B., Gillis M., de Vos P., Kersters K., Swings J.. ( 1996;). Polyphasic taxonomy, a consensus approach to bacterial systematics. . Microbiol Rev 60:, 407–438.[PubMed]
    [Google Scholar]
  34. Velázquez E., Palomo J. L., Rivas R., Guerra H., Peix A., Trujillo M. E., García-Benavides P., Mateos P. F., Wabiko H., Martínez-Molina E.. ( 2010;). Analysis of core genes supports the reclassification of strains Agrobacterium radiobacter K84 and Agrobacterium tumefaciens AKE10 into the species Rhizobium rhizogenes. . Syst Appl Microbiol 33:, 247–251. [CrossRef][PubMed]
    [Google Scholar]
  35. Vincent J. M. ( 1970;). Manual for the practical study of root-nodule bacteria. . Oxford:: Blackwell Scientific;, IBP Handbook, 15, 164.
  36. Wang E. T., Martínez-Romero E.. ( 2000;). Phylogeny of root- and stem-nodule bacteria associated with legumes. . In Prokaryotic Nitrogen Fixation: a Model System for Analysis of a Biological Process, pp. 177–186. Edited by Triplett E. W... Wymondham:: Horizon Scientific;.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.064543-0
Loading
/content/journal/ijsem/10.1099/ijs.0.064543-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error