1887

Abstract

Enrichment cultures inoculated with hydrothermally influenced nearshore sediment from Papua New Guinea led to the isolation of an arsenic-tolerant, acidophilic, facultatively aerobic bacterial strain designated PNG-April. Cells of this strain were Gram-stain-negative, rod-shaped, motile and did not form spores. Strain PNG-April grew at temperatures between 4 °C and 40 °C (optimum 30–37 °C), at pH 3.5 to 8.3 (optimum pH 5–6) and in the presence of up to 2.7 % NaCl (optimum 0–1.0 %). Both arsenate and arsenite were tolerated up to concentrations of at least 0.5 mM. Metabolism in strain PNG-April was strictly respiratory. Heterotrophic growth occurred with O or nitrate as electron acceptors, and aerobic lithoautotrophic growth was observed with thiosulfate or nitrite as electron donors. The novel isolate was capable of N-fixation. The respiratory quinones were Q-8 and Q-7. Phylogenetically, strain PNG-April belongs to the genus and shares the highest 16S rRNA gene sequence similarity with the type strains of (99.8 %), (98.8 %), (98.4 %) and (98.4 %). Differences from these related species in several physiological characteristics (lipid composition, carbohydrate utilization, enzyme profiles) and DNA–DNA hybridization suggested the isolate represents a novel species of the genus , for which we propose the name sp. nov. The type strain is PNG-April ( = DSM 28142 = LMG 28183).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.064477-0
2015-01-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/1/189.html?itemId=/content/journal/ijsem/10.1099/ijs.0.064477-0&mimeType=html&fmt=ahah

References

  1. Akerman N. H., Price R. E., Pichler T., Amend J. P. ( 2011 ). Energy sources for chemolithotrophs in an arsenic- and iron-rich shallow-sea hydrothermal system. . Geobiology 9, 436445.[PubMed] [CrossRef]
    [Google Scholar]
  2. Anandham R., Indiragandhi P., Madhaiyan M., Ryu K. Y., Jee H. J., Sa T. M. ( 2008 ). Chemolithoautotrophic oxidation of thiosulfate and phylogenetic distribution of sulfur oxidation gene (soxB) in rhizobacteria isolated from crop plants. . Res Microbiol 159, 579589. [CrossRef] [PubMed]
    [Google Scholar]
  3. Anandham R., Indira Gandhi P., Kwon S. W., Sa T. M., Kim Y. K., Jee H. J. ( 2009 ). Mixotrophic metabolism in Burkholderia kururiensis subsp. thiooxydans subsp. nov., a facultative chemolithoautotrophic thiosulfate oxidizing bacterium isolated from rhizosphere soil and proposal for classification of the type strain of Burkholderia kururiensis as Burkholderia kururiensis subsp. kururiensis subsp. nov.. Arch Microbiol 191, 885894. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bhowal S., Chakraborty R. ( 2011 ). Five novel acid-tolerant oligotrophic thiosulfate-metabolizing chemolithotrophic acid mine drainage strains affiliated with the genus Burkholderia of Betaproteobacteria and identification of two novel soxB gene homologues. . Res Microbiol 162, 436445. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bligh E. G., Dyer W. J. ( 1959 ). A rapid method of total lipid extraction and purification. . Can J Biochem Physiol 37, 911917. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. ( 1977 ). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81, 461466. [CrossRef] [PubMed]
    [Google Scholar]
  7. Coenye T., Vandamme P. ( 2003 ). Diversity and significance of Burkholderia species occupying diverse ecological niches. . Environ Microbiol 5, 719729. [CrossRef] [PubMed]
    [Google Scholar]
  8. Coenye T., Laevens S., Willems A., Ohlén M., Hannant W., Govan J. R. W., Gillis M., Falsen E., Vandamme P. ( 2001 ). Burkholderia fungorum sp. nov. and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples. . Int J Syst Evol Microbiol 51, 10991107. [CrossRef] [PubMed]
    [Google Scholar]
  9. De Ley J., Cattoir H., Reynaerts A. ( 1970 ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12, 133142. [CrossRef] [PubMed]
    [Google Scholar]
  10. De Meyer S. E., Cnockaert M., Ardley J. K., Trengove R. D., Garau G., Howieson J. G., Vandamme P. ( 2013 ). Burkholderia rhynchosiae sp. nov., isolated from Rhynchosia ferulifolia root nodules. . Int J Syst Evol Microbiol 63, 39443949. [CrossRef] [PubMed]
    [Google Scholar]
  11. Estrada-de los Santos P., Vacaseydel-Aceves N. B., Martínez-Aguilar L., Cruz-Hernández M. A., Mendoza-Herrera A., Caballero-Mellado J. ( 2011 ). Cupriavidus and Burkholderia species associated with agricultural plants that grow in alkaline soils. . J Microbiol 49, 867876. [CrossRef] [PubMed]
    [Google Scholar]
  12. Estrada-de los Santos P., Vinuesa P., Martínez-Aguilar L., Hirsch A. M., Caballero-Mellado J. ( 2013 ). Phylogenetic analysis of Burkholderia species by multilocus sequence analysis. . Curr Microbiol 67, 5160. [CrossRef] [PubMed]
    [Google Scholar]
  13. Goris J., De Vos P., Caballero-Mellado J., Park J., Falsen E., Quensen J. F. III, Tiedje J. M., Vandamme P. ( 2004 ). Classification of the biphenyl- and polychlorinated biphenyl-degrading strain LB400T and relatives as Burkholderia xenovorans sp. nov.. Int J Syst Evol Microbiol 54, 16771681. [CrossRef] [PubMed]
    [Google Scholar]
  14. Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W., Gascuel O. ( 2010 ). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. . Syst Biol 59, 307321. [CrossRef] [PubMed]
    [Google Scholar]
  15. Hugh R., Leifson E. ( 1953 ). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram negative bacteria. . J Bacteriol 66, 2426.[PubMed]
    [Google Scholar]
  16. Huss V. A. R., Festl H., Schleifer K.-H. ( 1983 ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4, 184192. [CrossRef] [PubMed]
    [Google Scholar]
  17. Jung S. J., Jang K.-H., Sihn E.-H., Park S.-K., Park C.-H. ( 2005 ). Characteristics of sulfur oxidation by a newly isolated Burkholderia spp.. J Microbiol Biotechnol 15, 716721.
    [Google Scholar]
  18. Kim O.-S., Cho Y.-J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. & other authors ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721. [CrossRef] [PubMed]
    [Google Scholar]
  19. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. & other authors ( 2007 ). clustal w and clustal_x version 2.0. . Bioinformatics 23, 29472948. [CrossRef] [PubMed]
    [Google Scholar]
  20. Leboffe M. J., Pierce B. E. ( 2011 ). A Photographic Atlas for the Microbiology Laboratory, , 4th edn.. Englewood, CO:: Morton Publishing;.
    [Google Scholar]
  21. Lim J. H., Baek S.-H., Lee S.-T. ( 2008 ). Burkholderia sediminicola sp. nov., isolated from freshwater sediment. . Int J Syst Evol Microbiol 58, 565569. [CrossRef] [PubMed]
    [Google Scholar]
  22. MacFaddin J. F. ( 1980 ). Biochemical Tests for Identification of Medical Bacteria, , 2nd edn.. Baltimore, MD:: Williams & Wilkins;.
    [Google Scholar]
  23. Martínez-Aguilar L., Salazar-Salazar C., Méndez R. D., Caballero-Mellado J., Hirsch A. M., Vásquez-Murrieta M. S., Estrada-de los Santos P. ( 2013 ). Burkholderia caballeronis sp. nov., a nitrogen fixing species isolated from tomato (Lycopersicon esculentum) with the ability to effectively nodulate Phaseolus vulgaris . . Antonie van Leeuwenhoek 104, 10631071. [CrossRef] [PubMed]
    [Google Scholar]
  24. Matsuzaka E., Nomura N., Maseda H., Otagaki H., Nakajima-Kambe T., Nakahara T., Uchiyama H. ( 2003 ). Participation of nitrite reductase in conversion of NO2 to NO3 in a heterotrophic nitrifier, Burkholderia cepacia NH-17, with denitrification activity. . Microbes Environ 18, 203209. [CrossRef]
    [Google Scholar]
  25. Mesbah M., Premachandran U., Whitman W. B. ( 1989 ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39, 159167. [CrossRef]
    [Google Scholar]
  26. Meyer-Dombard D. R., Price R. E., Pichler T., Amend J. P. ( 2012 ). Prokaryotic populations in arsenic-rich shallow-sea hydrothermal sediments of Ambitle Island, Papua New Guinea. . Geomicrobiol J 29, 117. [CrossRef]
    [Google Scholar]
  27. Meyer-Dombard D. R., Amend J. P., Osburn M. R. ( 2013 ). Microbial diversity and potential for arsenic and iron biogeochemical cycling at an arsenic-rich, shallow-sea hydrothermal vent (Tutum Bay, Papua New Guinea). . Chem Geol 348, 3747. [CrossRef]
    [Google Scholar]
  28. Peeters C., Zlosnik J. E. A., Spilker T., Hird T. J., LiPuma J. J., Vandamme P. ( 2013 ). Burkholderia pseudomultivorans sp. nov., a novel Burkholderia cepacia complex species from human respiratory samples and the rhizosphere. . Syst Appl Microbiol 36, 483489. [CrossRef] [PubMed]
    [Google Scholar]
  29. Pichler T., Veizer J., Hall G. E. M. ( 1999 ). The chemical composition of shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea and their effect on ambient seawater. . Mar Chem 64, 229252. [CrossRef]
    [Google Scholar]
  30. Price R. E., Amend J. P., Pichler T. ( 2007 ). Enhanced geochemical gradients in a marine shallow-water hydrothermal system: unusual arsenic speciation in horizontal and vertical pore water profiles. . Appl Geochem 22, 25952605. [CrossRef]
    [Google Scholar]
  31. Reasoner D. J., Geldreich E. E. ( 1985 ). A new medium for the enumeration and subculture of bacteria from potable water. . Appl Environ Microbiol 49, 17.[PubMed]
    [Google Scholar]
  32. Sakai K., Nisijima H., Ikenaga Y., Wakayama M., Moriguchi M. ( 2000 ). Purification and characterization of nitrite-oxidizing enzyme from heterotrophic Bacillus badius I-73, with special concern to catalase. . Biosci Biotechnol Biochem 64, 27272730. [CrossRef] [PubMed]
    [Google Scholar]
  33. Sessitsch A., Coenye T., Sturz A. V., Vandamme P., Barka E. A., Salles J. F., Van Elsas J. D., Faure D., Reiter B. & other authors ( 2005 ). Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. . Int J Syst Evol Microbiol 55, 11871192. [CrossRef] [PubMed]
    [Google Scholar]
  34. Stanier R. Y., Palleroni N. J., Doudoroff M. ( 1966 ). The aerobic pseudomonads: a taxonomic study. . J Gen Microbiol 43, 159271. [CrossRef] [PubMed]
    [Google Scholar]
  35. Suárez-Moreno Z. R., Caballero-Mellado J., Coutinho B. G., Mendonça-Previato L., James E. K., Venturi V. ( 2012 ). Common features of environmental and potentially beneficial plant-associated Burkholderia . . Microb Ecol 63, 249266. [CrossRef] [PubMed]
    [Google Scholar]
  36. Tamaoka J., Komagata K. ( 1984 ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25, 125128. [CrossRef]
    [Google Scholar]
  37. Tindall B. J. ( 1990a ). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13, 128130. [CrossRef]
    [Google Scholar]
  38. Tindall B. J. ( 1990b ). Lipid composition of Halobacterium lacusprofundi . . FEMS Microbiol Lett 66, 199202. [CrossRef]
    [Google Scholar]
  39. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R. ( 2007 ). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, , 3rd edn., pp. 330393. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R. . Washington, DC:: American Society for Microbiology;. [CrossRef]
    [Google Scholar]
  40. Vandamme P., Opelt K., Knöchel N., Berg C., Schönmann S., De Brandt E., Eberl L., Falsen E., Berg G. ( 2007 ). Burkholderia bryophila sp. nov. and Burkholderia megapolitana sp. nov., moss-associated species with antifungal and plant-growth-promoting properties. . Int J Syst Evol Microbiol 57, 22282235. [CrossRef] [PubMed]
    [Google Scholar]
  41. Vandamme P., De Brandt E., Houf K., Salles J. F., van Elsas J. D., Spilker T., LiPuma J. J. ( 2013 ). Burkholderia humi sp. nov., Burkholderia choica sp. nov., Burkholderia telluris sp. nov., Burkholderia terrestris sp. nov. and Burkholderia udeis sp. nov.: Burkholderia glathei-like bacteria from soil and rhizosphere soil. . Int J Syst Evol Microbiol 63, 47074718. [CrossRef] [PubMed]
    [Google Scholar]
  42. Verstraete B., Peeters C., van Wyk B., Smets E., Dessein S., Vandamme P. ( 2014 ). Intraspecific variation in Burkholderia caledonica: Europe vs. Africa and soil vs. endophytic isolates. . Syst Appl Microbiol 37, 194199. [CrossRef] [PubMed]
    [Google Scholar]
  43. Vial L., Chapalain A., Groleau M.-C., Déziel E. ( 2011 ). The various lifestyles of the Burkholderia cepacia complex species: a tribute to adaptation. . Environ Microbiol 13, 112. [CrossRef] [PubMed]
    [Google Scholar]
  44. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. & other authors ( 1987 ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37, 463464. [CrossRef]
    [Google Scholar]
  45. Weiner M., Penha P. D. ( 1990 ). Evaluation of Bacto TB hydrolysis reagent (Tween 80) for the identification of Branhamella catarrhalis . . J Clin Microbiol 28, 126127.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.064477-0
Loading
/content/journal/ijsem/10.1099/ijs.0.064477-0
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error