1887

Abstract

Enrichment cultures inoculated with hydrothermally influenced nearshore sediment from Papua New Guinea led to the isolation of an arsenic-tolerant, acidophilic, facultatively aerobic bacterial strain designated PNG-April. Cells of this strain were Gram-stain-negative, rod-shaped, motile and did not form spores. Strain PNG-April grew at temperatures between 4 °C and 40 °C (optimum 30–37 °C), at pH 3.5 to 8.3 (optimum pH 5–6) and in the presence of up to 2.7 % NaCl (optimum 0–1.0 %). Both arsenate and arsenite were tolerated up to concentrations of at least 0.5 mM. Metabolism in strain PNG-April was strictly respiratory. Heterotrophic growth occurred with O or nitrate as electron acceptors, and aerobic lithoautotrophic growth was observed with thiosulfate or nitrite as electron donors. The novel isolate was capable of N-fixation. The respiratory quinones were Q-8 and Q-7. Phylogenetically, strain PNG-April belongs to the genus and shares the highest 16S rRNA gene sequence similarity with the type strains of (99.8 %), (98.8 %), (98.4 %) and (98.4 %). Differences from these related species in several physiological characteristics (lipid composition, carbohydrate utilization, enzyme profiles) and DNA–DNA hybridization suggested the isolate represents a novel species of the genus , for which we propose the name sp. nov. The type strain is PNG-April ( = DSM 28142 = LMG 28183).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.064477-0
2015-01-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/1/189.html?itemId=/content/journal/ijsem/10.1099/ijs.0.064477-0&mimeType=html&fmt=ahah

References

  1. Akerman N. H. , Price R. E. , Pichler T. , Amend J. P. . ( 2011; ). Energy sources for chemolithotrophs in an arsenic- and iron-rich shallow-sea hydrothermal system. . Geobiology 9:, 436–445.[PubMed] [CrossRef]
    [Google Scholar]
  2. Anandham R. , Indiragandhi P. , Madhaiyan M. , Ryu K. Y. , Jee H. J. , Sa T. M. . ( 2008; ). Chemolithoautotrophic oxidation of thiosulfate and phylogenetic distribution of sulfur oxidation gene (soxB) in rhizobacteria isolated from crop plants. . Res Microbiol 159:, 579–589. [CrossRef] [PubMed]
    [Google Scholar]
  3. Anandham R. , Indira Gandhi P. , Kwon S. W. , Sa T. M. , Kim Y. K. , Jee H. J. . ( 2009; ). Mixotrophic metabolism in Burkholderia kururiensis subsp. thiooxydans subsp. nov., a facultative chemolithoautotrophic thiosulfate oxidizing bacterium isolated from rhizosphere soil and proposal for classification of the type strain of Burkholderia kururiensis as Burkholderia kururiensis subsp. kururiensis subsp. nov.. Arch Microbiol 191:, 885–894. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bhowal S. , Chakraborty R. . ( 2011; ). Five novel acid-tolerant oligotrophic thiosulfate-metabolizing chemolithotrophic acid mine drainage strains affiliated with the genus Burkholderia of Betaproteobacteria and identification of two novel soxB gene homologues. . Res Microbiol 162:, 436–445. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bligh E. G. , Dyer W. J. . ( 1959; ). A rapid method of total lipid extraction and purification. . Can J Biochem Physiol 37:, 911–917. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cashion P. , Holder-Franklin M. A. , McCully J. , Franklin M. . ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef] [PubMed]
    [Google Scholar]
  7. Coenye T. , Vandamme P. . ( 2003; ). Diversity and significance of Burkholderia species occupying diverse ecological niches. . Environ Microbiol 5:, 719–729. [CrossRef] [PubMed]
    [Google Scholar]
  8. Coenye T. , Laevens S. , Willems A. , Ohlén M. , Hannant W. , Govan J. R. W. , Gillis M. , Falsen E. , Vandamme P. . ( 2001; ). Burkholderia fungorum sp. nov. and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples. . Int J Syst Evol Microbiol 51:, 1099–1107. [CrossRef] [PubMed]
    [Google Scholar]
  9. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  10. De Meyer S. E. , Cnockaert M. , Ardley J. K. , Trengove R. D. , Garau G. , Howieson J. G. , Vandamme P. . ( 2013; ). Burkholderia rhynchosiae sp. nov., isolated from Rhynchosia ferulifolia root nodules. . Int J Syst Evol Microbiol 63:, 3944–3949. [CrossRef] [PubMed]
    [Google Scholar]
  11. Estrada-de los Santos P. , Vacaseydel-Aceves N. B. , Martínez-Aguilar L. , Cruz-Hernández M. A. , Mendoza-Herrera A. , Caballero-Mellado J. . ( 2011; ). Cupriavidus and Burkholderia species associated with agricultural plants that grow in alkaline soils. . J Microbiol 49:, 867–876. [CrossRef] [PubMed]
    [Google Scholar]
  12. Estrada-de los Santos P. , Vinuesa P. , Martínez-Aguilar L. , Hirsch A. M. , Caballero-Mellado J. . ( 2013; ). Phylogenetic analysis of Burkholderia species by multilocus sequence analysis. . Curr Microbiol 67:, 51–60. [CrossRef] [PubMed]
    [Google Scholar]
  13. Goris J. , De Vos P. , Caballero-Mellado J. , Park J. , Falsen E. , Quensen J. F. III , Tiedje J. M. , Vandamme P. . ( 2004; ). Classification of the biphenyl- and polychlorinated biphenyl-degrading strain LB400T and relatives as Burkholderia xenovorans sp. nov.. Int J Syst Evol Microbiol 54:, 1677–1681. [CrossRef] [PubMed]
    [Google Scholar]
  14. Guindon S. , Dufayard J.-F. , Lefort V. , Anisimova M. , Hordijk W. , Gascuel O. . ( 2010; ). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. . Syst Biol 59:, 307–321. [CrossRef] [PubMed]
    [Google Scholar]
  15. Hugh R. , Leifson E. . ( 1953; ). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram negative bacteria. . J Bacteriol 66:, 24–26.[PubMed]
    [Google Scholar]
  16. Huss V. A. R. , Festl H. , Schleifer K.-H. . ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef] [PubMed]
    [Google Scholar]
  17. Jung S. J. , Jang K.-H. , Sihn E.-H. , Park S.-K. , Park C.-H. . ( 2005; ). Characteristics of sulfur oxidation by a newly isolated Burkholderia spp.. J Microbiol Biotechnol 15:, 716–721.
    [Google Scholar]
  18. Kim O.-S. , Cho Y.-J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. . & other authors ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  19. Larkin M. A. , Blackshields G. , Brown N. P. , Chenna R. , McGettigan P. A. , McWilliam H. , Valentin F. , Wallace I. M. , Wilm A. . & other authors ( 2007; ). clustal w and clustal_x version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef] [PubMed]
    [Google Scholar]
  20. Leboffe M. J. , Pierce B. E. . ( 2011; ). A Photographic Atlas for the Microbiology Laboratory, , 4th edn.. Englewood, CO:: Morton Publishing;.
    [Google Scholar]
  21. Lim J. H. , Baek S.-H. , Lee S.-T. . ( 2008; ). Burkholderia sediminicola sp. nov., isolated from freshwater sediment. . Int J Syst Evol Microbiol 58:, 565–569. [CrossRef] [PubMed]
    [Google Scholar]
  22. MacFaddin J. F. . ( 1980; ). Biochemical Tests for Identification of Medical Bacteria, , 2nd edn.. Baltimore, MD:: Williams & Wilkins;.
    [Google Scholar]
  23. Martínez-Aguilar L. , Salazar-Salazar C. , Méndez R. D. , Caballero-Mellado J. , Hirsch A. M. , Vásquez-Murrieta M. S. , Estrada-de los Santos P. . ( 2013; ). Burkholderia caballeronis sp. nov., a nitrogen fixing species isolated from tomato (Lycopersicon esculentum) with the ability to effectively nodulate Phaseolus vulgaris . . Antonie van Leeuwenhoek 104:, 1063–1071. [CrossRef] [PubMed]
    [Google Scholar]
  24. Matsuzaka E. , Nomura N. , Maseda H. , Otagaki H. , Nakajima-Kambe T. , Nakahara T. , Uchiyama H. . ( 2003; ). Participation of nitrite reductase in conversion of NO2 to NO3 in a heterotrophic nitrifier, Burkholderia cepacia NH-17, with denitrification activity. . Microbes Environ 18:, 203–209. [CrossRef]
    [Google Scholar]
  25. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  26. Meyer-Dombard D. R. , Price R. E. , Pichler T. , Amend J. P. . ( 2012; ). Prokaryotic populations in arsenic-rich shallow-sea hydrothermal sediments of Ambitle Island, Papua New Guinea. . Geomicrobiol J 29:, 1–17. [CrossRef]
    [Google Scholar]
  27. Meyer-Dombard D. R. , Amend J. P. , Osburn M. R. . ( 2013; ). Microbial diversity and potential for arsenic and iron biogeochemical cycling at an arsenic-rich, shallow-sea hydrothermal vent (Tutum Bay, Papua New Guinea). . Chem Geol 348:, 37–47. [CrossRef]
    [Google Scholar]
  28. Peeters C. , Zlosnik J. E. A. , Spilker T. , Hird T. J. , LiPuma J. J. , Vandamme P. . ( 2013; ). Burkholderia pseudomultivorans sp. nov., a novel Burkholderia cepacia complex species from human respiratory samples and the rhizosphere. . Syst Appl Microbiol 36:, 483–489. [CrossRef] [PubMed]
    [Google Scholar]
  29. Pichler T. , Veizer J. , Hall G. E. M. . ( 1999; ). The chemical composition of shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea and their effect on ambient seawater. . Mar Chem 64:, 229–252. [CrossRef]
    [Google Scholar]
  30. Price R. E. , Amend J. P. , Pichler T. . ( 2007; ). Enhanced geochemical gradients in a marine shallow-water hydrothermal system: unusual arsenic speciation in horizontal and vertical pore water profiles. . Appl Geochem 22:, 2595–2605. [CrossRef]
    [Google Scholar]
  31. Reasoner D. J. , Geldreich E. E. . ( 1985; ). A new medium for the enumeration and subculture of bacteria from potable water. . Appl Environ Microbiol 49:, 1–7.[PubMed]
    [Google Scholar]
  32. Sakai K. , Nisijima H. , Ikenaga Y. , Wakayama M. , Moriguchi M. . ( 2000; ). Purification and characterization of nitrite-oxidizing enzyme from heterotrophic Bacillus badius I-73, with special concern to catalase. . Biosci Biotechnol Biochem 64:, 2727–2730. [CrossRef] [PubMed]
    [Google Scholar]
  33. Sessitsch A. , Coenye T. , Sturz A. V. , Vandamme P. , Barka E. A. , Salles J. F. , Van Elsas J. D. , Faure D. , Reiter B. . & other authors ( 2005; ). Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. . Int J Syst Evol Microbiol 55:, 1187–1192. [CrossRef] [PubMed]
    [Google Scholar]
  34. Stanier R. Y. , Palleroni N. J. , Doudoroff M. . ( 1966; ). The aerobic pseudomonads: a taxonomic study. . J Gen Microbiol 43:, 159–271. [CrossRef] [PubMed]
    [Google Scholar]
  35. Suárez-Moreno Z. R. , Caballero-Mellado J. , Coutinho B. G. , Mendonça-Previato L. , James E. K. , Venturi V. . ( 2012; ). Common features of environmental and potentially beneficial plant-associated Burkholderia . . Microb Ecol 63:, 249–266. [CrossRef] [PubMed]
    [Google Scholar]
  36. Tamaoka J. , Komagata K. . ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  37. Tindall B. J. . ( 1990a; ). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  38. Tindall B. J. . ( 1990b; ). Lipid composition of Halobacterium lacusprofundi . . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  39. Tindall B. J. , Sikorski J. , Smibert R. A. , Krieg N. R. . ( 2007; ). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, , 3rd edn., pp. 330–393. Edited by Reddy C. A. , Beveridge T. J. , Breznak J. A. , Marzluf G. , Schmidt T. M. , Snyder L. R. . . Washington, DC:: American Society for Microbiology;. [CrossRef]
    [Google Scholar]
  40. Vandamme P. , Opelt K. , Knöchel N. , Berg C. , Schönmann S. , De Brandt E. , Eberl L. , Falsen E. , Berg G. . ( 2007; ). Burkholderia bryophila sp. nov. and Burkholderia megapolitana sp. nov., moss-associated species with antifungal and plant-growth-promoting properties. . Int J Syst Evol Microbiol 57:, 2228–2235. [CrossRef] [PubMed]
    [Google Scholar]
  41. Vandamme P. , De Brandt E. , Houf K. , Salles J. F. , van Elsas J. D. , Spilker T. , LiPuma J. J. . ( 2013; ). Burkholderia humi sp. nov., Burkholderia choica sp. nov., Burkholderia telluris sp. nov., Burkholderia terrestris sp. nov. and Burkholderia udeis sp. nov.: Burkholderia glathei-like bacteria from soil and rhizosphere soil. . Int J Syst Evol Microbiol 63:, 4707–4718. [CrossRef] [PubMed]
    [Google Scholar]
  42. Verstraete B. , Peeters C. , van Wyk B. , Smets E. , Dessein S. , Vandamme P. . ( 2014; ). Intraspecific variation in Burkholderia caledonica: Europe vs. Africa and soil vs. endophytic isolates. . Syst Appl Microbiol 37:, 194–199. [CrossRef] [PubMed]
    [Google Scholar]
  43. Vial L. , Chapalain A. , Groleau M.-C. , Déziel E. . ( 2011; ). The various lifestyles of the Burkholderia cepacia complex species: a tribute to adaptation. . Environ Microbiol 13:, 1–12. [CrossRef] [PubMed]
    [Google Scholar]
  44. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. . & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  45. Weiner M. , Penha P. D. . ( 1990; ). Evaluation of Bacto TB hydrolysis reagent (Tween 80) for the identification of Branhamella catarrhalis . . J Clin Microbiol 28:, 126–127.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.064477-0
Loading
/content/journal/ijsem/10.1099/ijs.0.064477-0
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error