1887

Abstract

A strictly anaerobic, mesophilic, sulfate-reducing bacterial strain (DS), isolated from river sediment contaminated with volatile organic compounds, was characterized phenotypically and phylogenetically. Cells were Gram-reaction-negative, non-motile short rods. For growth, optimum NaCl concentration was 0.9 g l, optimum temperature was 30 °C and optimum pH was 7.2. Strain DS utilized phenol, benzoate, 4-hydroxybenzoate, 4-methylphenol, 4-chlorophenol, acetate, butyrate and pyruvate as electron donors for sulfate reduction. Electron donors were completely oxidized. Strain DS did not utilize sulfite, thiosulfate or nitrate as electron acceptors. The genomic DNA G+C content of strain DS was 58.9 mol%. Major cellular fatty acids were iso-C, anteiso-C and Cω7. Phylogenetic analyses based on the 16S rRNA gene indicated its closest relatives were strains of (about 98–99 % sequence similarity) but the DNA–DNA hybridization value with Ani1 was around 40 %. Although strain DS and its relatives shared most phenotypic and chemotaxonomic characteristics, the utilization of 4-chlorophenol, the range of electron acceptors and the optimum growth conditions differed. Strain DS is closely related to strains of , but constitutes a different species within the genus. Based on phylogeny, phenotypic characteristics and chemotaxonomic characteristics, strain DS and were clearly different from strains of other species of the genus . We thus propose the reclassification of within a new genus, gen. nov., as comb. nov. We also propose sp. nov. to accommodate strain DS. The type strain is DS ( = JCM 19179 = DSM 27197).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.064360-0
2014-09-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/9/3081.html?itemId=/content/journal/ijsem/10.1099/ijs.0.064360-0&mimeType=html&fmt=ahah

References

  1. Ahn Y.-B. , Chae J.-C. , Zylstra G. J. , Häggblom M. M. . ( 2009; ). Degradation of phenol via phenylphosphate and carboxylation to 4-hydroxybenzoate by a newly isolated strain of the sulfate-reducing bacterium Desulfobacterium anilini . . Appl Environ Microbiol 75:, 4248–4253. [CrossRef] [PubMed]
    [Google Scholar]
  2. Akasaka H. , Ueki A. , Hanada S. , Kamagata Y. , Ueki K. . ( 2003; ). Propionicimonas paludicola gen. nov., sp. nov., a novel facultatively anaerobic, Gram-positive, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil. . Int J Syst Evol Microbiol 53:, 1991–1998. [CrossRef] [PubMed]
    [Google Scholar]
  3. Altschul S. F. , Madden T. L. , Schäffer A. A. , Zhang J. , Zhang Z. , Miller W. , Lipman D. J. . ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef] [PubMed]
    [Google Scholar]
  4. Baba D. , Katayama A. . ( 2007; ). Enhanced anaerobic biodegradation of polychlorinated biphenyls in burnt soil culture. . J Biosci Bioeng 104:, 62–68.[CrossRef]
    [Google Scholar]
  5. Bak F. , Widdel F. . ( 1986a; ). Anaerobic degradation of indolic compounds by sulfate-reducing enrichment cultures, and description of Desulfobacterium indolicum gen. nov., sp. nov.. Arch Microbiol 146:, 170–176. [CrossRef]
    [Google Scholar]
  6. Bak F. , Widdel F. . ( 1986b; ). Anaerobic degradation of phenol and phenol derivatives by Desulfobacterium phenolicum . . Arch Microbiol 146:, 177–180. [CrossRef]
    [Google Scholar]
  7. Boopathy R. . ( 1995; ). Isolation and characterization of a phenol-degrading, sulfate-reducing bacterium from swine manure. . Bioresour Technol 54:, 29–33. [CrossRef]
    [Google Scholar]
  8. Brysch K. , Schneider C. , Fuchs G. , Widdel F. . ( 1987; ). Lithoautotrophic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov.. Arch Microbiol 148:, 264–274. [CrossRef]
    [Google Scholar]
  9. DeWeerd K. A. , Mandelco L. , Tanner R. S. , Woese C. R. , Suflita J. M. . ( 1990; ). Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. . Arch Microbiol 154:, 23–30.[CrossRef]
    [Google Scholar]
  10. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  11. Gogotova G. I. , Vainshtein M. B. . ( 1989; ). Description of a sulfate-reducing bacterium, Desulfobacterium macestii sp. nov., which is capable of autotrophic growth. . Microbiology (English translation of Mikrobiogiya) 58:, 64–68.
    [Google Scholar]
  12. Hippe H. , Vainshtein M. , Gogotova G. I. , Stackebrandt E. . ( 2003; ). Reclassification of Desulfobacterium macestii as Desulfomicrobium macestii comb. nov.. Int J Syst Evol Microbiol 53:, 1127–1130. [CrossRef] [PubMed]
    [Google Scholar]
  13. Hungate R. E. . ( 1966; ). The Rumen and its Microbes. New York:: Academic Press;.
    [Google Scholar]
  14. Imhoff-Stuckle D. , Pfennig N. . ( 1983; ). Isolation and characterization of a nicotinic acid-degrading sulfate reducing bacterium, Desulfococcus niacini sp. nov.. Arch Microbiol 136:, 194–198. [CrossRef]
    [Google Scholar]
  15. Katayama-Fujimura Y. , Komatsu Y. , Kuraishi H. , Kaneko T. . ( 1984; ). Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. . Agric Biol Chem 48:, 3169–3172. [CrossRef]
    [Google Scholar]
  16. Kuever J. , Könneke M. , Galushko A. , Drzyzga O. . ( 2001; ). Reclassification of Desulfobacterium phenolicum as Desulfobacula phenolica comb. nov. and description of strain SaxT as Desulfotignum balticum gen. nov., sp. nov.. Int J Syst Evol Microbiol 51:, 171–177.[PubMed]
    [Google Scholar]
  17. Kuever J. , Rainey F. A. , Widdel F. . ( 2005; ). Class IV. Deltaproteobacteria class nov.. In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2, pp. 965–967. Edited by Brenner D. J. , Krieg N. R. , Staley J. T. , Garrity G. M. . . New York:: Springer;. [CrossRef]
    [Google Scholar]
  18. Lane D. J. . ( 1991; ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M. . . Chichester:: Wiley;.
    [Google Scholar]
  19. Miller L. T. . ( 1982; ). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16:, 584–586.[PubMed]
    [Google Scholar]
  20. Miyagawa E. , Azuma R. , Suto E. . ( 1979; ). Cellular fatty acid composition in Gram-negative obligately anaerobic rods. . J Gen Appl Microbiol 25:, 41–51. [CrossRef]
    [Google Scholar]
  21. Moore L. V. H. , Bourne D. M. , Moore W. E. C. . ( 1994; ). Comparative distribution and taxonomic value of cellular fatty acids in thirty-three genera of anaerobic gram-negative bacilli. . Int J Syst Bacteriol 44:, 338–347. [CrossRef] [PubMed]
    [Google Scholar]
  22. Rabus R. , Nordhaus R. , Ludwig W. , Widdel F. . ( 1993; ). Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. . Appl Environ Microbiol 59:, 1444–1451.[PubMed]
    [Google Scholar]
  23. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  24. Schnell S. , Bak F. , Pfennig N. . ( 1989; ). Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulfate-reducing bacteria and description of Desulfobacterium anilini . . Arch Microbiol 152:, 556–563. [CrossRef] [PubMed]
    [Google Scholar]
  25. Stackebrandt E. , Goebel B. M. . ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition and bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  26. Suzuki D. , Ueki A. , Amaishi A. , Ueki K. . ( 2007; ). Diversity of substrate utilization and growth characteristics of sulfate-reducing bacteria isolated from estuarine sediment in Japan. . J Gen Appl Microbiol 53:, 119–132. [CrossRef] [PubMed]
    [Google Scholar]
  27. Szewzyk, R. & Pfennig, N. (1987). Complete oxidation of catechol by the strictly anaerobic sulfate-reducing Desulfobacterium catecholicum sp. nov. Arch Microbiol 147, 163–168.
  28. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  29. Thompson J. D. , Higgins D. G. , Gibson T. J. . ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef] [PubMed]
    [Google Scholar]
  30. Ueki A. , Suto T. . ( 1979; ). Cellular fatty acid composition of sulfate-reducing bacteria. . J Gen Appl Microbiol 25:, 185–196. [CrossRef]
    [Google Scholar]
  31. Widdel F. . ( 1988; ). Microbiology and ecology of sulfate- and sulfurreducing bacteria. . In Biology of Anaerobic Microorganisms, pp. 469–585. Edited by Zehnder A. J. B. . . New York:: John Wiley;.
    [Google Scholar]
  32. Widdel F. , Kohring G.-W. , Mayer F. . ( 1983; ). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the ®lamentous gliding Desulfonema limicola gen. nov., sp. nov., and Desulfonema magnum sp. nov. . Arch Microbiol 134:, 286–294. [CrossRef] [PubMed]
    [Google Scholar]
  33. Widdel F. , Bak F. . ( 1992; ). Gram-negative mesophilic sulfatereducing bacteria. . In The Prokaryotes, , 2nd edn., pp. 3352–3378. Edited by Balows A. , Trüper H. G. , Dworkin M. , Harder W. , Schleifer K. H. . . New York:: Springer;.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.064360-0
Loading
/content/journal/ijsem/10.1099/ijs.0.064360-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error