1887

Abstract

A phosphate-mobilizing, Gram-negative bacterium was isolated from rhizospheric soil of from a natural salt meadow as part of an investigation of rhizospheric bacteria from salt-resistant plant species and evaluation of their plant-growth-promoting abilities. Cells were rods, motile, strictly aerobic, oxidase-positive and catalase-negative. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain E19 was distinct from other taxa within the class . Strain E19 showed less than 93.5 % 16S rRNA gene sequence similarity with members of the genera (≤93.5 %), (≤93.1 %), (≤93.1 %), (≤93.1 %) and (≤93.0 %) and was most closely related to (93.5 % 16S rRNA gene sequence similarity to the type strain). The sole respiratory quinone was Q-10, and the polar lipids comprised phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, an aminolipid and an unidentified phospholipid. Major fatty acids were Cω7 (71.4 %), summed feature 2 (C 3-OH and/or iso-C; 8.3 %), C (7.9 %) and C (6.1 %). The DNA G+C content of strain E19 was 59.9±0.7 mol%. The capacity for nitrogen fixation was confirmed by the presence of the gene and the acetylene reduction assay. On the basis of the results of our polyphasic taxonomic study, the new isolate represents a novel genus and species, for which the name gen. nov., sp. nov. is proposed. The type strain of is E19 ( = LMG 27460 = KACC 17263).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.064154-0
2014-09-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/9/3160.html?itemId=/content/journal/ijsem/10.1099/ijs.0.064154-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. . J Mol Biol 215:, 403–410. [CrossRef][PubMed]
    [Google Scholar]
  2. Bibi F., Jeong J. H., Chung E. J., Jeon C. O., Chung Y. R.. ( 2014;). Labrenzia suaedae sp. nov., a marine bacterium isolated from a halophyte, and emended description of the genus Labrenzia. . Int J Syst Evol Microbiol 64:, 1116–1122. [CrossRef][PubMed]
    [Google Scholar]
  3. Biebl H., Pukall R., Lünsdorf H., Schulz S., Allgaier M., Tindall B. J., Wagner-Döbler I.. ( 2007;). Description of Labrenzia alexandrii gen. nov., sp. nov., a novel alphaproteobacterium containing bacteriochlorophyll a, and a proposal for reclassification of Stappia aggregata as Labrenzia aggregata comb. nov., of Stappia marina as Labrenzia marina comb. nov. and of Stappia alba as Labrenzia alba comb. nov., and emended descriptions of the genera Pannonibacter, Stappia and Roseibium, and of the species Roseibium denhamense and Roseibium hamelinense. . Int J Syst Evol Microbiol 57:, 1095–1107. [CrossRef][PubMed]
    [Google Scholar]
  4. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F.. ( 1978;). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. . Proc Natl Acad Sci U S A 75:, 4801–4805. [CrossRef][PubMed]
    [Google Scholar]
  5. Bürgmann H., Widmer F., Von Sigler W., Zeyer J.. ( 2004;). New molecular screening tools for analysis of free-living diazotrophs in soil. . Appl Environ Microbiol 70:, 240–247. [CrossRef][PubMed]
    [Google Scholar]
  6. Cho J.-C., Giovannoni S. J.. ( 2004;). Oceanicola granulosus gen. nov., sp. nov. and Oceanicola batsensis sp. nov., poly-β-hydroxybutyrate-producing marine bacteria in the order ‘Rhodobacterales’. . Int J Syst Evol Microbiol 54:, 1129–1136. [CrossRef][PubMed]
    [Google Scholar]
  7. Choma A., Komaniecka I.. ( 2002;). Analysis of phospholipids and ornithine-containing lipids from Mesorhizobium spp.. Syst Appl Microbiol 25:, 326–331. [CrossRef][PubMed]
    [Google Scholar]
  8. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T.. & other authors ( 2009;). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. . Nucleic Acids Res 37: (Database issue), D141–D145. [CrossRef][PubMed]
    [Google Scholar]
  9. Collins M. D., Jones D.. ( 1981;). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. . Microbiol Rev 45:, 316–354.[PubMed]
    [Google Scholar]
  10. Donachie S. P., Bowman J. P., Alam M.. ( 2006;). Nesiotobacter exalbescens gen. nov., sp. nov., a moderately thermophilic alphaproteobacterium from an Hawaiian hypersaline lake. . Int J Syst Evol Microbiol 56:, 563–567. [CrossRef][PubMed]
    [Google Scholar]
  11. Doronina N. V., Trotsenko Y. A., Krausova V. I., Boulygina E. S., Tourova T. P.. ( 1998;). Methylopila capsulata gen. nov., sp. nov., a novel non-pigmented aerobic facultatively methylotrophic bacterium. . Int J Syst Bacteriol 48:, 1313–1321. [CrossRef][PubMed]
    [Google Scholar]
  12. Edgar R. C., Haas B. J., Clemente J. C., Quince C., Knight R.. ( 2011;). uchime improves sensitivity and speed of chimera detection. . Bioinformatics 27:, 2194–2200. [CrossRef][PubMed]
    [Google Scholar]
  13. Flores-Félix J. D., Carro L., Velázquez E., Valverde A., Cerda-Castillo E., García-Fraile P., Rivas R.. ( 2013;). Phyllobacterium endophyticum sp. nov., isolated from nodules of Phaseolus vulgaris. . Int J Syst Evol Microbiol 63:, 821–826. [CrossRef][PubMed]
    [Google Scholar]
  14. Garrity G. M., Bell A. J., Lilburn T.. ( 2005;). Class I. Alphaproteobacteria class. nov.. In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2C, p. 1. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M... New York:: Springer;. [CrossRef]
    [Google Scholar]
  15. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. ( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  16. González J. M., Saiz-Jimenez C.. ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4:, 770–773. [CrossRef][PubMed]
    [Google Scholar]
  17. Heimbrook M. E., Wang W. L. L., Campbell G.. ( 1989;). Staining bacterial flagella easily. . J Clin Microbiol 27:, 2612–2615.[PubMed]
    [Google Scholar]
  18. Hilyard E. J., Jones-Meehan J. M., Spargo B. J., Hill R. T.. ( 2008;). Enrichment, isolation, and phylogenetic identification of polycyclic aromatic hydrocarbon-degrading bacteria from Elizabeth River sediments. . Appl Environ Microbiol 74:, 1176–1182. [CrossRef][PubMed]
    [Google Scholar]
  19. Hwang C. Y., Cho B. C.. ( 2008;). Cohaesibacter gelatinilyticus gen. nov., sp. nov., a marine bacterium that forms a distinct branch in the order Rhizobiales, and proposal of Cohaesibacteraceae fam. nov.. Int J Syst Evol Microbiol 58:, 267–277. [CrossRef][PubMed]
    [Google Scholar]
  20. Im W. T., Kim S. H., Kim M. K., Ten L. N., Lee S. T.. ( 2006;). Pleomorphomonas koreensis sp. nov., a nitrogen-fixing species in the order Rhizobiales. . Int J Syst Evol Microbiol 56:, 1663–1666. [CrossRef][PubMed]
    [Google Scholar]
  21. Jarvis B. D. W., Van Berkum P., Chen W. X., Nour S. M., Fernandez M. P., Cleyet-Marel J. C., Gillis M.. ( 1997;). Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov.. Int J Syst Bacteriol 47:, 895–898. [CrossRef]
    [Google Scholar]
  22. Jurado V., Gonzalez J. M., Laiz L., Saiz-Jimenez C.. ( 2006;). Aurantimonas altamirensis sp. nov., a member of the order Rhizobiales isolated from Altamira Cave. . Int J Syst Evol Microbiol 56:, 2583–2585. [CrossRef][PubMed]
    [Google Scholar]
  23. Kaiya S., Rubaba O., Yoshida N., Yamada T., Hiraishi A.. ( 2012;). Characterization of Rhizobium naphthalenivorans sp. nov. with special emphasis on aromatic compound degradation and multilocus sequence analysis of housekeeping genes. . J Gen Appl Microbiol 58:, 211–224. [CrossRef][PubMed]
    [Google Scholar]
  24. Kämpfer P., Müller C., Mau M., Neef A., Auling G., Busse H.-J., Osborn A. M., Stolz A.. ( 1999;). Description of Pseudaminobacter gen. nov. with two new species, Pseudaminobacter salicylatoxidans sp. nov. and Pseudaminobacter defluvii sp. nov.. Int J Syst Bacteriol 49:, 887–897. [CrossRef][PubMed]
    [Google Scholar]
  25. Kämpfer P., Arun A. B., Frischmann A., Busse H. J., Young C. C., Rekha P. D., Chen W.-M.. ( 2013;). Stappia taiwanensis sp. nov., isolated from a coastal thermal spring. . Int J Syst Evol Microbiol 63:, 1350–1354. [CrossRef][PubMed]
    [Google Scholar]
  26. Kampmann K., Ratering S., Kramer I., Schmidt M., Zerr W., Schnell S.. ( 2012;). Unexpected stability of Bacteroidetes and Firmicutes communities in laboratory biogas reactors fed with different defined substrates. . Appl Environ Microbiol 78:, 2106–2119. [CrossRef][PubMed]
    [Google Scholar]
  27. Kaneshiro T., Marr A. G.. ( 1962;). Phospholipids of Azotobacter agilis, Agrobacterium tumefaciens, and Escherichia coli. . J Lipids 3:, 184–189.
    [Google Scholar]
  28. Kasana R. C., Salwan R., Dhar H., Dutt S., Gulati A.. ( 2008;). A rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. . Curr Microbiol 57:, 503–507. [CrossRef][PubMed]
    [Google Scholar]
  29. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  30. Lai Q., Qiao N., Wu C., Sun F., Yuan J., Shao Z.. ( 2010;). Stappia indica sp. nov., isolated from deep seawater of the Indian Ocean. . Int J Syst Evol Microbiol 60:, 733–736. [CrossRef][PubMed]
    [Google Scholar]
  31. Lambert B., Joos H., Dierickx S., Vantomme R., Swings J., Kersters K., Van Montagu M.. ( 1990;). Identification and plant interaction of a Phyllobacterium sp., a predominant rhizobacterium of young sugar beet plants. . Appl Environ Microbiol 56:, 1093–1102.[PubMed]
    [Google Scholar]
  32. Laranjo M., Oliveira S.. ( 2011;). Tolerance of Mesorhizobium type strains to different environmental stresses. . Antonie van Leeuwenhoek 99:, 651–662. [CrossRef][PubMed]
    [Google Scholar]
  33. Li L., Zheng J.-W., Hang B.-J., Doronina N. V., Trotsenko Y. A., He J., Li S.-P.. ( 2011;). Methylopila jiangsuensis sp. nov., an aerobic, facultatively methylotrophic bacterium. . Int J Syst Evol Microbiol 61:, 1561–1566. [CrossRef][PubMed]
    [Google Scholar]
  34. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  35. Ma B., Gong J.. ( 2013;). A meta-analysis of the publicly available bacterial and archaeal sequence diversity in saline soils. . World J Microbiol Biotechnol 29:, 2325–2334. [CrossRef][PubMed]
    [Google Scholar]
  36. Madhaiyan M., Hu C. J., Jegan Roy J., Kim S.-J., Weon H.-Y., Kwon S. W., Ji L.. ( 2013a;). Aureimonas jatrophae sp. nov. and Aureimonas phyllosphaerae sp. nov., leaf-associated bacteria isolated from Jatropha curcas L.. Int J Syst Evol Microbiol 63:, 1702–1708. [CrossRef][PubMed]
    [Google Scholar]
  37. Madhaiyan M., Jin T. Y., Roy J. J., Kim S.-J., Weon H. Y., Kwon S.-W., Ji L.. ( 2013b;). Pleomorphomonas diazotrophica sp. nov., an endophytic N-fixing bacterium isolated from root tissue of Jatropha curcas L.. Int J Syst Evol Microbiol 63:, 2477–2483. [CrossRef][PubMed]
    [Google Scholar]
  38. Mantelin S., Saux M. F.-L., Zakhia F., Béna G., Bonneau S., Jeder H., de Lajudie P., Cleyet-Marel J.-C.. ( 2006;). Emended description of the genus Phyllobacterium and description of four novel species associated with plant roots: Phyllobacterium bourgognense sp. nov., Phyllobacterium ifriqiyense sp. nov., Phyllobacterium leguminum sp. nov. and Phyllobacterium brassicacearum sp. nov.. Int J Syst Evol Microbiol 56:, 827–839. [CrossRef][PubMed]
    [Google Scholar]
  39. Mergaert J., Cnockaert M. C., Swings J.. ( 2002;). Phyllobacterium myrsinacearum (subjective synonym Phyllobacterium rubiacearum) emend.. Int J Syst Evol Microbiol 52:, 1821–1823. [CrossRef][PubMed]
    [Google Scholar]
  40. Miller K. J., Shon B. C., Gore R. S., Hunt W. P.. ( 1990;). The phospholipid composition of Bradyrhizobium spp.. Curr Microbiol 21:, 205–210. [CrossRef]
    [Google Scholar]
  41. Moré M. I., Herrick J. B., Silva M. C., Ghiorse W. C., Madsen E. L.. ( 1994;). Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment. . Appl Environ Microbiol 60:, 1572–1580.[PubMed]
    [Google Scholar]
  42. Moreno E., Stackebrandt E., Dorsch M., Wolters J., Busch M., Mayer H.. ( 1990;). Brucella abortus 16S rRNA and lipid A reveal a phylogenetic relationship with members of the alpha-2 subdivision of the class Proteobacteria. . J Bacteriol 172:, 3569–3576.[PubMed]
    [Google Scholar]
  43. Penrose D. M., Glick B. R.. ( 2003;). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. . Physiol Plant 118:, 10–15. [CrossRef][PubMed]
    [Google Scholar]
  44. Pruesse E., Peplies J., Glöckner F. O.. ( 2012;). sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics 28:, 1823–1829. [CrossRef][PubMed]
    [Google Scholar]
  45. Rathsack K., Reitner J., Stackebrandt E., Tindall B. J.. ( 2011;). Reclassification of Aurantimonas altamirensis (Jurado et al. 2006), Aurantimonas ureilytica (Weon et al. 2007) and Aurantimonas frigidaquae (Kim et al. 2008) as members of a new genus, Aureimonas gen. nov., as Aureimonas altamirensis gen. nov., comb. nov., Aureimonas ureilytica comb. nov. and Aureimonas frigidaquae comb. nov., and emended descriptions of the genera Aurantimonas and Fulvimarina. . Int J Syst Evol Microbiol 61:, 2722–2728. [CrossRef][PubMed]
    [Google Scholar]
  46. Ribeiro C. M., Cardoso E. J. B. N.. ( 2012;). Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil pine (Araucaria angustifolia). . Microbiol Res 167:, 69–78. [CrossRef][PubMed]
    [Google Scholar]
  47. Rohde M.. ( 2011;). Microscopy. . Methods Microbiol 38:, 61–100. [CrossRef]
    [Google Scholar]
  48. Schauer S., Kämpfer P., Wellner S., Spröer C., Kutschera U.. ( 2011;). Methylobacterium marchantiae sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the thallus of a liverwort. . Int J Syst Evol Microbiol 61:, 870–876. [CrossRef][PubMed]
    [Google Scholar]
  49. Suarez C., Ratering S., Kramer I., Schnell S.. ( 2014a;). Cellvibrio diazotrophicus sp. nov., a nitrogen-fixing bacteria isolated from the rhizosphere of salt meadow plants and emended description of the genus Cellvibrio. . Int J Syst Evol Microbiol 64:, 481–486. [CrossRef][PubMed]
    [Google Scholar]
  50. Suarez C., Ratering S., Geissler-Plaum R., Schnell S.. ( 2014b;). Rheinheimera hassiensis sp. nov. and Rheinheimera muenzenbergensis sp. nov., two species from the rhizosphere of Hordeum secalinum. . Int J Syst Evol Microbiol 64:, 1202–1209. [CrossRef][PubMed]
    [Google Scholar]
  51. Tabatabai M. A., Bremner J. M.. ( 1969;). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. . Soil Biol Biochem 1:, 301–307. [CrossRef]
    [Google Scholar]
  52. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  53. Thompson E. A., Kaufman A. E., Johnston N. C., Goldfine H.. ( 1983;). Phospholipids of Rhizobium meliloti and Agrobacterium tumefaciens: lack of effect of Ti plasmid. . Lipids 18:, 602–606. [CrossRef]
    [Google Scholar]
  54. Tighe S. W., de Lajudie P., Dipietro K., Lindström K., Nick G., Jarvis B. D. W.. ( 2000;). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. . Int J Syst Evol Microbiol 50:, 787–801. [CrossRef][PubMed]
    [Google Scholar]
  55. Turner G. L., Gibson A. H.. ( 1980;). Measurement of nitrogen fixation by indirect means. . In Methods for Evaluating Biological Nitrogen Fixation, pp. 111–139. Edited by Bergensen F. J... Chichester:: Wiley;.
    [Google Scholar]
  56. Uchino Y., Hirata A., Yokota A., Sugiyama J.. ( 1998;). Reclassification of marine Agrobacterium species: proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev.. J Gen Appl Microbiol 44:, 201–210. [CrossRef][PubMed]
    [Google Scholar]
  57. Unno Y., Okubo K., Wasaki J., Shinano T., Osaki M.. ( 2005;). Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of lupin analysed by phytate utilization ability. . Environ Microbiol 7:, 396–404. [CrossRef][PubMed]
    [Google Scholar]
  58. Urakami T., Oyanagi H., Araki H., Suzuki K., Komagata K.. ( 1990;). Recharacterization and emended description of the genus Mycoplana and description of two new species, Mycoplana ramosa and Mycoplana segnis. . Int J Syst Bacteriol 40:, 434–442. [CrossRef]
    [Google Scholar]
  59. Valverde A., Velázquez E., Fernández-Santos F., Vizcaíno N., Rivas R., Mateos P. F., Martínez-Molina E., Igual J. M., Willems A.. ( 2005;). Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. . Int J Syst Evol Microbiol 55:, 1985–1989. [CrossRef][PubMed]
    [Google Scholar]
  60. Vazquez P., Holguin G., Puente M., Lopez-Cortes A., Bashan Y.. ( 2000;). Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. . Biol Fertil Soils 30:, 460–468. [CrossRef]
    [Google Scholar]
  61. Weon H. Y., Kim B. Y., Yoo S. H., Joa J. H., Lee K. H., Zhang Y. S., Kwon S. W., Koo B. S.. ( 2007;). Aurantimonas ureilytica sp. nov., isolated from an air sample. . Int J Syst Evol Microbiol 57:, 1717–1720. [CrossRef][PubMed]
    [Google Scholar]
  62. Wilkinson S. G.. ( 1988;). Gram-negative bacteria. . In Microbial Lipids, vol. 1, pp. 299–487. Edited by Ratledge C., Wilkinson S. G... New York:: Academic Press;.
    [Google Scholar]
  63. Wright E. S., Yilmaz L. S., Noguera D. R.. ( 2012;). decipher, a search-based approach to chimera identification for 16S rRNA sequences. . Appl Environ Microbiol 78:, 717–725. [CrossRef][PubMed]
    [Google Scholar]
  64. Xie C. H., Yokota A.. ( 2005;). Pleomorphomonas oryzae gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from paddy soil of Oryza sativa. . Int J Syst Evol Microbiol 55:, 1233–1237. [CrossRef][PubMed]
    [Google Scholar]
  65. Xu L., Zhang Y., Deng Z. S., Zhao L., Wei X. L., Wei G. H.. ( 2013;). Rhizobium qilianshanense sp. nov., a novel species isolated from root nodule of Oxytropis ochrocephala Bunge in China. . Antonie van Leeuwenhoek 103:, 559–565. [CrossRef][PubMed]
    [Google Scholar]
  66. Yang J., Kloepper J. W., Ryu C.-M.. ( 2009;). Rhizosphere bacteria help plants tolerate abiotic stress. . Trends Plant Sci 14:, 1–4. [CrossRef][PubMed]
    [Google Scholar]
  67. Yarza P., Richter M., Peplies J., Euzéby J., Amann R., Schleifer K.-H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. ( 2008;). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol 31:, 241–250. [CrossRef][PubMed]
    [Google Scholar]
  68. Yokota A., Akagawa-Matsushia M., Hiraishi A., Katayama Y., Urakami T., Yamasato K.. ( 1992;). Distribution of quinone systems in microorganisms: gram-negative eubacteria. . Bull Jpn Fed Cult Coll 8:, 136–171.
    [Google Scholar]
  69. Zhang X.-X., Tang X., Sheirdil R. A., Sun L., Ma X.-T.. ( 2014;). Rhizobium rhizoryzae sp. nov., isolated from rice roots. . Int J Syst Evol Microbiol 64:, 1373–1377. [CrossRef][PubMed]
    [Google Scholar]
  70. Zhou P. F., Chen W. M., Wei G. H.. ( 2010;). Mesorhizobium robiniae sp. nov., isolated from root nodules of Robinia pseudoacacia. . Int J Syst Evol Microbiol 60:, 2552–2556. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.064154-0
Loading
/content/journal/ijsem/10.1099/ijs.0.064154-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error