1887

Abstract

A Gram-stain-negative, motile, mesophilic, aerobic, rod-shaped bacterium, strain 5-11, was isolated from surface seawater at Muroto city, Kochi prefecture, Japan. The strain exhibited a narrow growth temperature range of 20–30 °C. Phylogenetic analyses based on 16S rRNA gene sequences showed that the strain fell within the order in the class and was related most closely to the genus (up to 91.2 % similarity to the type strains of species of the genus) but branched deeply from species of . The major fatty acids were iso-Cω9, iso-C, and Cω7 and/or iso-C 2-OH. Ubiquinone-10 (Q-10) was detected as the sole isoprenoid quinone. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and one unidentified aminolipid. Although strains of have been shown to contain unidentified glycolipids, they were not detected from strain 5-11. The DNA G+C content of strain 5-11 was 44.3 mol%, a value that was lower than those of strains of (50–58 mol%) and was relatively low for the members of the class . On the basis of phenotypic, genotypic and chemotaxonomic data, it is proposed that strain 5-11 represents a novel species of a new genus, gen. nov., sp. nov., within a new family fam. nov. The type strain of is 5-11 ( = NBRC 110045 = LMG 28278).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.063685-0
2014-09-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/9/3075.html?itemId=/content/journal/ijsem/10.1099/ijs.0.063685-0&mimeType=html&fmt=ahah

References

  1. Barrow G. I., Feltham R. K. A.. (editors) ( 1993;). Cowan and Steel’s Manual for the Identification of Medical Bacteria, , 3rd edn.. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  2. DeLong E. F., Preston C. M., Mincer T., Rich V., Hallam S. J., Frigaard N. U., Martinez A., Sullivan M. B., Edwards R.. & other authors ( 2006;). Community genomics among stratified microbial assemblages in the ocean’s interior. . Science 311:, 496–503. [CrossRef][PubMed]
    [Google Scholar]
  3. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  4. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  5. Garrity G. M., Brenner D. J., Krieg N. R., Staley J. T.. ( 2005;). Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2. New York:: Springer;.
    [Google Scholar]
  6. Hansman R. L., Griffin S., Watson J. T., Druffel E. R., Ingalls A. E., Pearson A., Aluwihare L. I.. ( 2009;). The radiocarbon signature of microorganisms in the mesopelagic ocean. . Proc Natl Acad Sci U S A 106:, 6513–6518. [CrossRef][PubMed]
    [Google Scholar]
  7. Katayama-Fujimura Y., Komatsu Y., Kuraishi H., Kaneko T.. ( 1984;). Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. . Agric Biol Chem 48:, 3169–3172. [CrossRef]
    [Google Scholar]
  8. Kwon K. K., Lee H. S., Yang S. H., Kim S. J.. ( 2005;). Kordiimonas gwangyangensis gen. nov., sp. nov., a marine bacterium isolated from marine sediments that forms a distinct phyletic lineage (Kordiimonadales ord. nov.) in the ‘Alphaproteobacteria’. . Int J Syst Evol Microbiol 55:, 2033–2037. [CrossRef][PubMed]
    [Google Scholar]
  9. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). clustal w and clustal x version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  10. Leifson E.. ( 1963;). Determination of carbohydrate metabolism of marine bacteria. . J Bacteriol 85:, 1183–1184.[PubMed]
    [Google Scholar]
  11. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  12. Math R. K., Jeong S. H., Jin H. M., Park M. S., Kim J. M., Jeon C. O.. ( 2012;). Kordiimonas aestuarii sp. nov., a marine bacterium isolated from a tidal flat. . Int J Syst Evol Microbiol 62:, 3049–3054. [CrossRef][PubMed]
    [Google Scholar]
  13. Nishijima M., Araki-Sakai M., Sano H.. ( 1997;). Identification of isoprenoid quinones by frit-FAB liquid chromatography–mass spectrometry for the chemotaxonomy of microorganisms. . J Microbiol Methods 28:, 113–122. [CrossRef]
    [Google Scholar]
  14. Paramasivam N., Ben-Dov E., Arotsker L., Kushmaro A.. ( 2013;). Eilatimonas milleporae gen. nov., sp. nov., a marine bacterium isolated from the hydrocoral Millepora dichotoma. . Int J Syst Evol Microbiol 63:, 1880–1884. [CrossRef][PubMed]
    [Google Scholar]
  15. Saito H., Miura K. I.. ( 1963;). Preparation of transforming deoxyribonucleic acid by phenol treatment. . Biochim Biophys Acta 72:, 619–629. [CrossRef][PubMed]
    [Google Scholar]
  16. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  17. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef][PubMed]
    [Google Scholar]
  18. Teramoto M., Suzuki M., Okazaki F., Hatmanti A., Harayama S.. ( 2009;). Oceanobacter-related bacteria are important for the degradation of petroleum aliphatic hydrocarbons in the tropical marine environment. . Microbiology 155:, 3362–3370. [CrossRef][PubMed]
    [Google Scholar]
  19. Teramoto M., Suzuki M., Hatmanti A., Harayama S.. ( 2010;). The potential of Cycloclasticus and Altererythrobacter strains for use in bioremediation of petroleum-aromatic-contaminated tropical marine environments. . J Biosci Bioeng 110:, 48–52. [CrossRef][PubMed]
    [Google Scholar]
  20. Teramoto M., Ohuchi M., Hatmanti A., Darmayati Y., Widyastuti Y., Harayama S., Fukunaga Y.. ( 2011;). Oleibacter marinus gen. nov., sp. nov., a bacterium that degrades petroleum aliphatic hydrocarbons in a tropical marine environment. . Int J Syst Evol Microbiol 61:, 375–380. [CrossRef][PubMed]
    [Google Scholar]
  21. Xu X. W., Huo Y. Y., Bai X. D., Wang C. S., Oren A., Li S. Y., Wu M.. ( 2011;). Kordiimonas lacus sp. nov., isolated from a ballast water tank, and emended description of the genus Kordiimonas. . Int J Syst Evol Microbiol 61:, 422–426. [CrossRef][PubMed]
    [Google Scholar]
  22. Yang S. H., Kim M. R., Seo H. S., Lee S. H., Lee J. H., Kim S. J., Kwon K. K.. ( 2013;). Description of Kordiimonas aquimaris sp. nov., isolated from seawater, and emended descriptions of the genus Kordiimonas Kwon et al. 2005 emend. Xu et al. 2011 and of its existing species. . Int J Syst Evol Microbiol 63:, 298–302. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.063685-0
Loading
/content/journal/ijsem/10.1099/ijs.0.063685-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error