1887

Abstract

A bacterial strain, designated UTM-3, isolated from the rhizosphere soil of (cempedak) in Malaysia was studied to determine its taxonomic position. Cells were Gram-stain-negative, non-spore-forming rods, devoid of flagella and gliding motility, that formed yellow-pigmented colonies on nutrient agar and contained MK-6 as the predominant menaquinone. Comparative analysis of the 16S rRNA gene sequence of strain UTM-3 with those of the most closely related species showed that the strain constituted a distinct phyletic line within the genus with the highest sequence similarities to NCTC 11390, 687B-08, 1084-08, CC-VM-7, 701B-08, GIMN1.005, NCTC 13530, NCTC 13529, LMG 27808, R4-1A, CW-E2, CW9, CCUG 52546, NBRC 14944, CCUG 14555, JS17-8, H8 and LMG 18212. The major whole-cell fatty acids were iso-C and iso-Cω9, followed by summed feature 4 (iso-C 2-OH and/or Cω7) and iso-C 3-OH, and the polar lipid profile consisted of phosphatidylethanolamine and several unknown lipids. The DNA G+C content strain UTM-3 was 34.8 mol%. On the basis of the phenotypic and phylogenetic evidence, it is concluded that the isolate represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is UTM-3 ( = CECT 8497 = KCTC 32509).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.063594-0
2014-09-01
2019-09-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/9/3153.html?itemId=/content/journal/ijsem/10.1099/ijs.0.063594-0&mimeType=html&fmt=ahah

References

  1. Bernardet J. F., Nakagawa Y., Holmes B..Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef][PubMed]
    [Google Scholar]
  2. Bernardet J. F., Bruun B., Hugo C.. ( 2006;). The genera Chryseobacterium and Elizabethkingia. . In The Prokaryotes: a Handbook on the Biology of Bacteria, , 3rd edn., vol. 7, pp. 638–676. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E... New York:: Springer;. [CrossRef]
    [Google Scholar]
  3. Bowman J. P.. ( 2000;). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov.. Int J Syst Evol Microbiol 50:, 1861–1868.[PubMed]
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  5. Chaudhari P. N., Wani K. S., Chaudhari B. L., Chincholkar S. B.. ( 2009;). Characteristics of sulfobacin A from a soil isolate Chryseobacterium gleum. . Appl Biochem Biotechnol 158:, 231–241. [CrossRef][PubMed]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  7. Escara J. F., Hutton J. R.. ( 1980;). Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. . Biopolymers 19:, 1315–1327. [CrossRef][PubMed]
    [Google Scholar]
  8. Huss V. A., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  9. Kämpfer P., Steiof M., Dott W.. ( 1991;). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol 21:, 227–251. [CrossRef][PubMed]
    [Google Scholar]
  10. Kim H.-S., Sang M. K., Jung H. W., Jeun Y.-C., Myung I.-S., Kim K. D.. ( 2012;). Identification and characterization of Chryseobacterium wanjuense strain KJ9C8 as a biocontrol agent of Phytophthora blight of pepper. . Crop Prot 32:, 129–137. [CrossRef]
    [Google Scholar]
  11. Krause M. S., Madden L. V., Hoitink H. A. J.. ( 2001;). Effect of potting mix microbial carrying capacity on biological control of rhizoctonia damping-off of radish and rhizoctonia crown and root rot of poinsettia. . Phytopathology 91:, 1116–1123. [CrossRef][PubMed]
    [Google Scholar]
  12. Milne I., Lindner D., Bayer M., Husmeier D., McGuire G., Marshall D. F., Wright F.. ( 2009;). TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops. . Bioinformatics 25:, 126–127. [CrossRef][PubMed]
    [Google Scholar]
  13. Miranda-Tello E., Fardeau M. L., Thomas P., Ramirez F., Casalot L., Cayol J. L., Garcia J. L., Ollivier B.. ( 2004;). Petrotoga mexicana sp. nov., a novel thermophilic, anaerobic and xylanolytic bacterium isolated from an oil-producing well in the Gulf of Mexico. . Int J Syst Evol Microbiol 54:, 169–174. [CrossRef][PubMed]
    [Google Scholar]
  14. Posada D., Crandall K. A.. ( 1998;). modeltest: testing the model of DNA substitution. . Bioinformatics 14:, 817–818. [CrossRef][PubMed]
    [Google Scholar]
  15. Ramos Solano B., Barriuso Maicas J., Pereyra de la Iglesia M. T., Domenech J., Gutiérrez Mañero F. J.. ( 2008;). Systemic disease protection elicited by plant growth promoting rhizobacteria strains: relationship between metabolic responses, systemic disease protection, and biotic elicitors. . Phytopathology 98:, 451–457. [CrossRef][PubMed]
    [Google Scholar]
  16. Scheuplein R. J., Mizutani A., Yamaguchi S.. ( 2007;). Studies on the non-pathogenicity of Chryseobacterium proteolyticum and on the safety of the enzyme: protein-glutaminase. . Regul Toxicol Pharmacol 49:, 79–89. [CrossRef][PubMed]
    [Google Scholar]
  17. Shin D. S., Park M. S., Jung S., Lee M. S., Lee K. H., Bae K. S., Kim S. B.. ( 2007;). Plant growth-promoting potential of endophytic bacteria isolated from roots of coastal sand dune plants. . J Microbiol Biotechnol 17:, 1361–1368.[PubMed]
    [Google Scholar]
  18. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  19. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef][PubMed]
    [Google Scholar]
  20. Vandamme P., Bernardet J.-F., Segers P., Kersters K., Holmes B.. ( 1994;). New perspectives in the classification of the Flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev.. Int J Syst Bacteriol 44:, 827–831. [CrossRef]
    [Google Scholar]
  21. Vaneechoutte M., Kämpfer P., De Baere T., Avesani V., Janssens M., Wauters G.. ( 2007;). Chryseobacterium hominis sp. nov., to accommodate clinical isolates biochemically similar to CDC groups II-h and II-c. . Int J Syst Evol Microbiol 57:, 2623–2628. [CrossRef][PubMed]
    [Google Scholar]
  22. Ventosa A., Marquez M. C., Kocur M., Tindall B. J.. ( 1993;). Comparative study of “Micrococcus sp.” strains CCM 168 and CCM 1405 and members of the genus Salinicoccus. . Int J Syst Bacteriol 43:, 245–248. [CrossRef][PubMed]
    [Google Scholar]
  23. Wang S. L., Yang C. H., Liang T. W., Yen Y. H.. ( 2008;). Optimization of conditions for protease production by Chryseobacterium taeanense TKU001. . Bioresour Technol 99:, 3700–3707. [CrossRef][PubMed]
    [Google Scholar]
  24. Wang S.-L., Liang Y.-C., Liang T.-W.. ( 2011;). Purification and characterization of a novel alkali-stable α-amylase from Chryseobacterium taeanense TKU001, and application in antioxidant and prebiotic. . Process Biochem 46:, 745–750. [CrossRef]
    [Google Scholar]
  25. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  26. Yoon J., Jang J. H., Kasai H.. ( 2013;). Spongiimonas flava gen. nov., sp. nov., a new member of the family Flavobacteriaceae isolated from an unidentified marine sponge. . Antonie van Leeuwenhoek 103:, 625–633. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.063594-0
Loading
/content/journal/ijsem/10.1099/ijs.0.063594-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error