1887

Abstract

A second novel clinical actinobacterial strain, designated IFM 10348, was isolated from the sputum of the same Japanese patient with bacterial pneumonia from whom the type strain of had been isolated. The strains differed in phylogenetic position and drug-resistance profiles. The taxonomic position of strain IFM 10348 was clarified by phenotypic, chemotaxonomic and phylogenetic studies. Phylogenetic analyses based on 16S rRNA gene sequences clearly demonstrated that strain IFM 10348 occupied a distinct clade within the genus and was related closely to DSM 45064 and DSM 44140 (97.3 and 97.1 % similarities, respectively). Strain IFM 10348 was also clearly differentiated from DSM 45064 and DSM 44140 based on and gene sequence similarity values. Strain IFM 10348 had MK-9(H) as the predominant menaquonine, contained -diaminopimelic acid, arabinose, galactose and glucosamine as cell-wall components, and contained Cω9, summed feature 3 (Cω7 and/or Cω6) and C as the major cellular fatty acids. Mycolic acids were present. The DNA G+C content of strain IFM 10348 was 68.0 mol%. DNA–DNA relatedness data coupled with the combination of genotypic and phenotypic data indicated that strain IFM 10348 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is IFM 10348 ( = CCTCC M2011245 = NCCB 100436).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.063438-0
2014-10-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/10/3520.html?itemId=/content/journal/ijsem/10.1099/ijs.0.063438-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. . J Mol Biol 215:, 403–410. [CrossRef][PubMed]
    [Google Scholar]
  2. Arenskötter M., Bröker D., Steinbüchel A.. ( 2004;). Biology of the metabolically diverse genus Gordonia. . Appl Environ Microbiol 70:, 3195–3204. [CrossRef][PubMed]
    [Google Scholar]
  3. Brigante G., Menozzi M. G., Pini B., Porta R., Somenzi P., Sciacca A., Spanu T., Stefani S.. ( 2008;). Identification of coagulase-negative staphylococci by using the BD Phoenix system in the low-inoculum mode. . J Clin Microbiol 46:, 3826–3828. [CrossRef][PubMed]
    [Google Scholar]
  4. Christensen H., Angen O., Mutters R., Olsen J. E., Bisgaard M.. ( 2000;). DNA–DNA hybridization determined in micro-wells using covalent attachment of DNA. . Int J Syst Evol Microbiol 50:, 1095–1102. [CrossRef][PubMed]
    [Google Scholar]
  5. Collins M., Jones D.. ( 1980;). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. . J Appl Microbiol 48:, 459–470.
    [Google Scholar]
  6. Dong X., Cai M.. ( 2001;). Manual of Systematics and Identification of General Bacteria. Beijing:: Science Press;.
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  8. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  9. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  10. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Biol 20:, 406–416. [CrossRef]
    [Google Scholar]
  11. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H.-N.. ( 1974;). Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. . Int J Syst Bacteriol 24:, 54–63. [CrossRef]
    [Google Scholar]
  12. Guindon S., Gascuel O.. ( 2003;). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52:, 696–704. [CrossRef][PubMed]
    [Google Scholar]
  13. Hasegawa T., Takizawa M., Tanida S.. ( 1983;). A rapid analysis for chemical grouping of aerobic actinomycetes. . J Gen Appl Microbiol 29:, 319–322. [CrossRef]
    [Google Scholar]
  14. Iida S., Taniguchi H., Kageyama A., Yazawa K., Chibana H., Murata S., Nomura F., Kroppenstedt R. M., Mikami Y.. ( 2005;). Gordonia otitidis sp. nov., isolated from a patient with external otitis. . Int J Syst Evol Microbiol 55:, 1871–1876. [CrossRef][PubMed]
    [Google Scholar]
  15. Jannat-Khah D. P., Halsey E. S., Lasker B. A., Steigerwalt A. G., Hinrikson H. P., Brown J. M.. ( 2009;). Gordonia araii infection associated with an orthopedic device and review of the literature on medical device-associated Gordonia infections. . J Clin Microbiol 47:, 499–502. [CrossRef][PubMed]
    [Google Scholar]
  16. Kageyama A., Iida S., Yazawa K., Kudo T., Suzuki S.-i., Koga T., Saito H., Inagawa H., Wada A. et al. ( 2006;). Gordonia araii sp. nov. and Gordonia effusa sp. nov., isolated from patients in Japan. . Int J Syst Evol Microbiol 56:, 1817–1821. [CrossRef][PubMed]
    [Google Scholar]
  17. Kämpfer P., Young C.-C., Chu J.-N., Frischmann A., Busse H.-J., Arun A. B., Shen F.-T., Rekha P. D.. ( 2011;). Gordonia humi sp. nov., isolated from soil. . Int J Syst Evol Microbiol 61:, 65–70. [CrossRef][PubMed]
    [Google Scholar]
  18. Kang Y., Takeda K., Yazawa K., Mikami Y.. ( 2009;). Phylogenetic studies of Gordonia species based on gyrB and secA1 gene analyses. . Mycopathologia 167:, 95–105. [CrossRef][PubMed]
    [Google Scholar]
  19. Kelly K. L.. ( 1964;). Inter-Society Color Council – National Bureau of Standards Color Name Charts Illustrated with Centroid Colors. Washington, DC:: US Government Printing Office;.
    [Google Scholar]
  20. Kim K. K., Lee K. C., Klenk H.-P., Oh H.-M., Lee J.-S.. ( 2009;). Gordonia kroppenstedtii sp. nov., a phenol-degrading actinomycete isolated from a polluted stream. . Int J Syst Evol Microbiol 59:, 1992–1996. [CrossRef][PubMed]
    [Google Scholar]
  21. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  22. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  23. Kimura M.. ( 1985;). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;.
    [Google Scholar]
  24. Kroppenstedt R. M.. ( 1982;). Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. . J Liq Chromatogr 5:, 2359–2367. [CrossRef]
    [Google Scholar]
  25. le Roes M., Goodwin C. M., Meyers P. R.. ( 2008;). Gordonia lacunae sp. nov., isolated from an estuary. . Syst Appl Microbiol 31:, 17–23. [CrossRef][PubMed]
    [Google Scholar]
  26. Lechevalier M. P., Lechevalier H.. ( 1970;). Chemical composition as a criterion in the classification of aerobic actinomycetes. . Int J Syst Bacteriol 20:, 435–443. [CrossRef]
    [Google Scholar]
  27. Leifson E.. ( 1960;). Atlas of Bacterial Flagellation. New York:: Academic Press;.
    [Google Scholar]
  28. Li W.-J., Xu P., Schumann P., Zhang Y.-Q., Pukall R., Xu L.-H., Stackebrandt E., Jiang C.-L.. ( 2007;). Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. . Int J Syst Evol Microbiol 57:, 1424–1428. [CrossRef][PubMed]
    [Google Scholar]
  29. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+ C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  30. Minnikin D., Collins M., Goodfellow M.. ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Microbiol 47:, 87–95.
    [Google Scholar]
  31. Minnikin D., O’Donnell A., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  32. Miyadoh M..( 2001;). Identification procedure at the genus level. . In Identification Manual of Actinomycetes, pp. 9–19. Edited by Miyadoh S., Hamada M., Hotta K., Kudo T., Seino A., Suzuki & A K... Yokota. Tokyo:: Business Center for Academic Societies Japan;.
    [Google Scholar]
  33. Saddler G. S., Tavecchia P., Lociuro S., Zanol M., Colombo L., Selva E.. ( 1991;). Analysis of madurose and other actinomycete whole cell sugars by gas chromatography. . J Microbiol Methods 14:, 185–191. [CrossRef]
    [Google Scholar]
  34. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  35. Sasser M..( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE: MIDI Inc.
    [Google Scholar]
  36. Shirling E., Gottlieb D.. ( 1966;). Methods for characterization of Streptomyces species. . Int J Syst Bacteriol 16:, 313–340. [CrossRef]
    [Google Scholar]
  37. Soddell J. A., Stainsby F. M., Eales K. L., Seviour R. J., Goodfellow M.. ( 2006;). Gordonia defluvii sp. nov., an actinomycete isolated from activated sludge foam. . Int J Syst Evol Microbiol 56:, 2265–2269. [CrossRef][PubMed]
    [Google Scholar]
  38. Stackebrandt E., Goebel B.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  39. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  40. Tang S.-K., Wang Y., Chen Y., Lou K., Cao L.-L., Xu L.-H., Li W.-J.. ( 2009;). Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. . Int J Syst Evol Microbiol 59:, 2025–2031. [CrossRef][PubMed]
    [Google Scholar]
  41. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  42. Tsukamura M.. ( 1971;). Proposal of a new genus, Gordona, for slightly acid-fast organisms occurring in sputa of patients with pulmonary disease and in soil. . J Gen Microbiol 68:, 15–26. [CrossRef][PubMed]
    [Google Scholar]
  43. Tsukamura M.. ( 1978;). Numerical classification of Rhodococcus (formerly Gordona) organisms recently isolated from sputa of patients: description of Rhodococcus sputi Tsukamura sp. nov.. Int J Syst Bacteriol 28:, 169–181. [CrossRef]
    [Google Scholar]
  44. Williams S.. ( 1989;). Genus Streptomyces Waksman and Henrici 1943. . In Bergey’s Manual of Systematic Bacteriology, vol. 4:, pp. 2452–2492. Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  45. Yassin A. F., Shen F.-T., Hupfer H., Arun A. B., Lai W.-A., Rekha P. D., Young C. C.. ( 2007;). Gordonia malaquae sp. nov., isolated from sludge of a wastewater treatment plant. . Int J Syst Evol Microbiol 57:, 1065–1068. [CrossRef][PubMed]
    [Google Scholar]
  46. Yoon J.-H., Lee J. J., Kang S.-S., Takeuchi M., Shin Y. K., Lee S. T., Kang K. H., Park Y.-H.. ( 2000;). Gordonia nitida sp. nov., a bacterium that degrades 3-ethylpyridine and 3-methylpyridine. . Int J Syst Evol Microbiol 50:, 1203–1210. [CrossRef][PubMed]
    [Google Scholar]
  47. Zhi X.-Y., Li W.-J., Stackebrandt E.. ( 2009;). An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. . Int J Syst Evol Microbiol 59:, 589–608. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.063438-0
Loading
/content/journal/ijsem/10.1099/ijs.0.063438-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error