1887

Abstract

Two myxobacterial strains (designated B00001 and B00002) were isolated from forest soil samples collected from Yakushima Island, Kagoshima, Japan. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains B00001 and B00002 respectively formed independent branches within the suborders and and were most closely related to DSM 14710 (90.4 % similarity) and DSM 14553 (91.3 %). Neither strain showed typical features of myxobacteria such as bacteriolytic action or fruiting body formation, but both had high DNA G+C contents (66.3–68.3 mol%). Swarming motility was observed in strain B00002 only. Cells of both strains were vegetative, chemoheterotrophic, mesophilic, strictly aerobic, Gram-negative, motile rods, and both strains exhibited esterase lipase (C8), leucine arylamidase, naphthol-AS-BI-phosphohydrolase and β-galactosidase activities. Strain B00001 contained MK-7 as the predominant respiratory quinone and the major fatty acid was iso-C. In contrast, strain B00002 contained MK-8 as the major cellular quinone and the major fatty acids were Cω5 and iso-C. Based on the phenotypic and genotypic data presented, strains B00001 and B00002 represent novel genera and species, for which we propose the names gen. nov., sp. nov. and gen. nov., sp. nov., respectively. The type strains of and are B00001 ( = NBRC 109945 = DSM 27710) and B00002 ( = NBRC 109946 = DSM 27648), respectively. The new genera are assigned to the new families fam. nov. and fam. nov., respectively. In addition, fam. nov., is proposed to accommodate the genus , which is related to the genus .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.063198-0
2014-10-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/10/3360.html?itemId=/content/journal/ijsem/10.1099/ijs.0.063198-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Chenna R., Sugawara H., Koike T., Lopez R., Gibson T. J., Higgins D. G., Thompson J. D.. ( 2003;). Multiple sequence alignment with the clustal series of programs. . Nucleic Acids Res 31:, 3497–3500. [CrossRef][PubMed]
    [Google Scholar]
  3. Felsenstein J.. ( 1985;). Confidence limit on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  4. Fitch W. M.. ( 1971;). Towards defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  5. Garcia R. O., Krug D., Müller R.. ( 2009a;). Discovering natural products from myxobacteria with emphasis on rare producer strains in combination with improved analytical methods. . Methods Enzymol 458:, 59–91. [CrossRef][PubMed]
    [Google Scholar]
  6. Garcia R. O., Reichenbach H., Ring M. W., Müller R.. ( 2009b;). Phaselicystis flava gen. nov., sp. nov., an arachidonic acid-containing soil myxobacterium, and the description of Phaselicystidaceae fam. nov.. Int J Syst Evol Microbiol 59:, 1524–1530. [CrossRef][PubMed]
    [Google Scholar]
  7. Garcia R., Gerth K., Stadler M., Dogma I. J. Jr, Müller R.. ( 2010;). Expanded phylogeny of myxobacteria and evidence for cultivation of the ‘unculturables’. . Mol Phylogenet Evol 57:, 878–887. [CrossRef][PubMed]
    [Google Scholar]
  8. Garcia R., Pistorius D., Stadler M., Müller R.. ( 2011;). Fatty acid-related phylogeny of myxobacteria as an approach to discover polyunsaturated omega-3/6 fatty acids. . J Bacteriol 193:, 1930–1942. [CrossRef][PubMed]
    [Google Scholar]
  9. Gerth K., Bedorf N., Höfle G., Irschik H., Reichenbach H.. ( 1996;). Epothilons A and B: antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria). Production, physico-chemical and biological properties. . J Antibiot (Tokyo) 49:, 560–563. [CrossRef][PubMed]
    [Google Scholar]
  10. Iizuka T., Jojima Y., Hayakawa A., Fujii T., Yamanaka S., Fudou R.. ( 2013;). Pseudenhygromyxa salsuginis gen. nov., sp. nov., a myxobacterium isolated from an estuarine marsh. . Int J Syst Evol Microbiol 63:, 1360–1369. [CrossRef][PubMed]
    [Google Scholar]
  11. Karwowski J. P., Sunga G. N., Kadam S., McAlpine J. B.. ( 1996;). A method for the selective isolation of Myxococcus directly from soil. . J Ind Microbiol 16:, 230–236. [CrossRef][PubMed]
    [Google Scholar]
  12. Katayama-Fujimura Y., Komatsu Y., Kuraishi H., Kaneko T.. ( 1984;). Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. . Agric Biol Chem 48:, 3169–3172. [CrossRef]
    [Google Scholar]
  13. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  14. Kishino H., Miyata T., Hasegawa M.. ( 1990;). Maximum likelihood inference of protein phylogeny, and the origin of chloroplasts. . J Mol Evol 31:, 151–160. [CrossRef]
    [Google Scholar]
  15. Lueders T., Kindler R., Miltner A., Friedrich M. W., Kaestner M.. ( 2006;). Identification of bacterial micropredators distinctively active in a soil microbial food web. . Appl Environ Microbiol 72:, 5342–5348. [CrossRef][PubMed]
    [Google Scholar]
  16. McCurdy H. D.. ( 1969;). Studies on the taxonomy of the Myxobacterales. I. Record of Canadian isolates and survey of methods. . Can J Microbiol 15:, 1453–1461. [CrossRef][PubMed]
    [Google Scholar]
  17. Mohr K. I., Garcia R. O., Gerth K., Irschik H., Müller R.. ( 2012;). Sandaracinus amylolyticus gen. nov., sp. nov., a starch-degrading soil myxobacterium, and description of Sandaracinaceae fam. nov.. Int J Syst Evol Microbiol 62:, 1191–1198. [CrossRef][PubMed]
    [Google Scholar]
  18. Nakagawa Y., Sakane T., Suzuki M., Hatano K.. ( 2002;). Phylogenetic structure of the genera Flexibacter, Flexithrix, and Microscilla deduced from 16S rRNA sequence analysis. . J Gen Appl Microbiol 48:, 155–165. [CrossRef][PubMed]
    [Google Scholar]
  19. Nakai R., Abe T., Baba T., Imura S., Kagoshima H., Kanda H., Kanekiyo A., Kohara Y., Koi A.. & other authors ( 2012;). Microflorae of aquatic moss pillars in a freshwater lake, East Antarctica, based on fatty acid and 16S rRNA gene analyses. . Polar Biol 35:, 425–433. [CrossRef]
    [Google Scholar]
  20. Nishijima M., Araki-Sakai M., Sano H.. ( 1997;). Identification of isoprenoid quinones by frit-FAB liquid chromatography-mass spectrometry for the chemotaxonomy of microorganisms. . J Microbiol Methods 28:, 113–122. [CrossRef]
    [Google Scholar]
  21. Reichenbach H.. ( 2005;). Order VIII. Myxococcales Tchan, Pochon and Prévot 1948, 398AL. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2C, pp. 1059–1072. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M... New York:: Springer;.
    [Google Scholar]
  22. Reichenbach H., Höfle G.. ( 2008;). Discovery and development of the epothilones: a novel class of antineoplastic drugs. . Drugs R D 9:, 1–10. [CrossRef][PubMed]
    [Google Scholar]
  23. Reichenbach H., Lang E., Schumann P., Spröer C.. ( 2006;). Byssovorax cruenta gen. nov., sp. nov., nom. rev., a cellulose-degrading myxobacterium: rediscovery of ‘Myxococcus cruentus’ Thaxter 1897. . Int J Syst Evol Microbiol 56:, 2357–2363. [CrossRef][PubMed]
    [Google Scholar]
  24. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  25. Sanford R. A., Cole J. R., Tiedje J. M.. ( 2002;). Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. . Appl Environ Microbiol 68:, 893–900. [CrossRef][PubMed]
    [Google Scholar]
  26. Shimkets L. J., Woese C. R.. ( 1992;). A phylogenetic analysis of the myxobacteria: basis for their classification. . Proc Natl Acad Sci U S A 89:, 9459–9463. [CrossRef][PubMed]
    [Google Scholar]
  27. Shimkets L. J., Dworkin M., Reichenbach H.. ( 2006;). The myxobacteria. . In The Prokaryotes, , 3rd edn., vol. 7, pp. 31–115. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E... New York:: Springer;. [CrossRef]
    [Google Scholar]
  28. Spröer C., Reichenbach H., Stackebrandt E.. ( 1999;). The correlation between morphological and phylogenetic classification of myxobacteria. . Int J Syst Bacteriol 49:, 1255–1262. [CrossRef][PubMed]
    [Google Scholar]
  29. Sultana M., Vogler S., Zargar K., Schmidt A. C., Saltikov C., Seifert J., Schlömann M.. ( 2012;). New clusters of arsenite oxidase and unusual bacterial groups in enrichments from arsenic-contaminated soil. . Arch Microbiol 194:, 623–635. [CrossRef][PubMed]
    [Google Scholar]
  30. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  31. Tian W., Sun Q., Xu D., Zhang Z., Chen D., Li C., Shen Q., Shen B.. ( 2013;). Succession of bacterial communities during composting process as detected by 16S rRNA clone libraries analysis. . Int Biodeterior Biodegradation 78:, 58–66. [CrossRef]
    [Google Scholar]
  32. Uchino Y., Yokota A., Sugiyama J.. ( 1997;). Phylogenetic position of the marine subdivision of Agrobacterium species based on 16S rRNA sequence analysis. . J Gen Appl Microbiol 43:, 243–247. [CrossRef][PubMed]
    [Google Scholar]
  33. Weissman K. J., Müller R.. ( 2010;). Myxobacterial secondary metabolites: bioactivities and modes-of-action. . Nat Prod Rep 27:, 1276–1295. [CrossRef][PubMed]
    [Google Scholar]
  34. Wenzel S. C., Müller R.. ( 2009;). The biosynthetic potential of myxobacteria and their impact in drug discovery. . Curr Opin Drug Discov Devel 12:, 220–230.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.063198-0
Loading
/content/journal/ijsem/10.1099/ijs.0.063198-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error