1887

Abstract

A Gram-staining-positive, aerobic, motile bacterium, designated strain MJ3, was isolated from (anchovy jeotgal), a traditional fermented seafood in South Korea. Cells were non-endospore-forming cocci showing catalase- and oxidase-positive reactions. Growth of strain MJ3 was observed at 15–45 °C (optimum, 30 °C), at pH 6.0–9.0 (optimum, pH 7.0–8.0) and in the presence of 1–24 % (w/v) NaCl (optimum, 10 % NaCl). Phylogenetic inference based on 16S rRNA gene sequences showed that strain MJ3 formed a tight phyletic lineage with members of the genus . Strain MJ3 was related most closely to 29CMI, DSM 20748, ISL-25, BY-5 and DSM 4771, with similarities of 98.8 %, 98.7 %, 98.6 %, 98.4 % and 98.3 %, respectively. However, the DNA–DNA relatedness values between strain MJ3 (KF732837) and DSM 22782, DSM 20748, DSM 23127, KCTC 3989 and JCM 12305 were 60±5.4 %, 58.5±6.5 %, 43.6±5.5 %, 37.2±5.8 % and 16.7±0.2 %, respectively. Chemotaxonomic data (sole isoprenoid quinone, MK-7; major cell-wall type, -diaminopimelic acid; major cellular fatty acids, anteiso-C, anteiso-C and iso-C; major polar lipids, phosphatidylglycerol and diphosphatidylglycerol; DNA G+C content, 46.3 mol%) also supported the affiliation of strain MJ3 with the genus . Therefore, strain MJ3 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MJ3 ( = KACC 16972 = JCM 19758).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.062042-0
2014-11-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/11/3624.html?itemId=/content/journal/ijsem/10.1099/ijs.0.062042-0&mimeType=html&fmt=ahah

References

  1. Choi E. J., Lee S. H., Jung J. Y., Jeon C. O.. ( 2013;). Brevibacterium jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. . Int J Syst Evol Microbiol 63:, 3430–3436. [CrossRef][PubMed]
    [Google Scholar]
  2. de la Haba R. R., Yilmaz P., Sánchez-Porro C., Birbir M., Ventosa A.. ( 2011;). Salimicrobium salexigens sp. nov., a moderately halophilic bacterium from salted hides. . Syst Appl Microbiol 34:, 435–439.[PubMed]
    [Google Scholar]
  3. Eschbach M., Möbitz H., Rompf A., Jahn D.. ( 2003;). Members of the genus Arthrobacter grow anaerobically using nitrate ammonification and fermentative processes: anaerobic adaptation of aerobic bacteria abundant in soil. . FEMS Microbiol Lett 223:, 227–230. [CrossRef][PubMed]
    [Google Scholar]
  4. Felsenstein J.. ( 2002;). phylip (phylogeny inference package), version 3.6a, Distributed by the author. . Department of Genome Sciences, University of Washington;, Seattle, WA, USA:.
  5. Gomori G.. ( 1955;). Preparation of buffers for use in enzyme studies. . Methods Enzymol 1:, 138–146. [CrossRef]
    [Google Scholar]
  6. Gonzalez J. M., Saiz-Jimenez C.. ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4:, 770–773. [CrossRef][PubMed]
    [Google Scholar]
  7. Hao M. V., Kocur M., Komagata K.. ( 1984;). Marinococcus gen. nov., a new genus for motile cocci with meso-diaminopimelic acid in the cell wall; and Marinococcus albus sp. nov. and Marinococcus halophilus (Novitsky and Kushner) comb. nov.. J Gen Appl Microbiol 30:, 449–459. [CrossRef]
    [Google Scholar]
  8. Jeon C. O., Park W., Ghiorse W. C., Madsen E. L.. ( 2004;). Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. . Int J Syst Evol Microbiol 54:, 93–97. [CrossRef][PubMed]
    [Google Scholar]
  9. Jeong S. H., Lee J. H., Jung J. Y., Lee S. H., Park M. S., Jeon C. O.. ( 2013;). Halomonas cibimaris sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. . Antonie van Leeuwenhoek 103:, 503–512. [CrossRef][PubMed]
    [Google Scholar]
  10. Jin H. M., Kim J. M., Lee H. J., Madsen E. L., Jeon C. O.. ( 2012;). Alteromonas as a key agent of polycyclic aromatic hydrocarbon biodegradation in crude oil-contaminated coastal sediment. . Environ Sci Technol 46:, 7731–7740. [CrossRef][PubMed]
    [Google Scholar]
  11. Jung J. Y., Lee S. H., Lee H. J., Jeon C. O.. ( 2013;). Microbial succession and metabolite changes during fermentation of saeu-jeot: traditional Korean salted seafood. . Food Microbiol 34:, 360–368. [CrossRef][PubMed]
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  13. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  14. Lányi B.. ( 1987;). Classical and rapid identification methods for medically important bacteria. . Methods Microbial 19:, 1–67. [CrossRef]
    [Google Scholar]
  15. Lee S. H., Shim J. K., Kim J. M., Choi H. K., Jeon C. O.. ( 2011;). Henriciella litoralis sp. nov., isolated from a tidal flat, transfer of Maribaculum marinum Lai et al. 2009 to the genus Henriciella as Henriciella aquimarina nom. nov. and emended description of the genus Henriciella. . Int J Syst Evol Microbiol 61:, 722–727. [CrossRef][PubMed]
    [Google Scholar]
  16. Lee S. H., Jung J. Y., Jeon C. O.. ( 2012;). Draft genome sequence of Salimicrobium sp. strain MJ3, isolated from Myulchi-Jeot, Korean fermented seafood. . J Bacteriol 194:, 6695. [CrossRef][PubMed]
    [Google Scholar]
  17. Lee S. H., Jung J. Y., Jeon C. O.. ( 2014;). Effects of temperature on microbial succession and metabolite change during saeu-jeot fermentation. . Food Microbiol 38:, 16–25. [CrossRef][PubMed]
    [Google Scholar]
  18. Leifson E.. ( 1963;). Determination of carbohydrate metabolism of marine bacteria. . J Bacteriol 85:, 1183–1184.[PubMed]
    [Google Scholar]
  19. Logan N. A., Berge O., Bishop A. H., Busse H. J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L.. & other authors ( 2009;). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. . Int J Syst Evol Microbiol 59:, 2114–2121. [CrossRef][PubMed]
    [Google Scholar]
  20. Lu S., Park M., Ro H. S., Lee D. S., Park W., Jeon C. O.. ( 2006;). Analysis of microbial communities using culture-dependent and culture-independent approaches in an anaerobic/aerobic SBR reactor. . J Microbiol 44:, 155–161.[PubMed]
    [Google Scholar]
  21. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M.. ( 1977;). Polar lipid composition in the classification of Nocardia and related bacteria. . Int J Syst Bacteriol 27:, 104–117. [CrossRef]
    [Google Scholar]
  22. Nawrocki E. P., Eddy S. R.. ( 2007;). Query-dependent banding (QDB) for faster RNA similarity searches. . PLOS Comput Biol 3:, e56. [CrossRef][PubMed]
    [Google Scholar]
  23. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  24. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  25. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C. J., Nesme X., Rosselló-Mora R., Swings J.. & other authors ( 2002;). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. . Int J Syst Evol Microbiol 52:, 1043–1047. [CrossRef][PubMed]
    [Google Scholar]
  26. Stamatakis A., Ott M., Ludwig T.. ( 2005;). RAxML-OMP: An efficient program for phylogenetic inference on SMPs. . In Proceedings of 8th International Conference on Parallel Computing Technologies (PaCT2005), Lecture Notes in Computer Science, 3606, 288–302. Berlin:: Springer;.
    [Google Scholar]
  27. Ventosa A., García M. T., Kamekura M., Onishi H., Ruiz-Berraquero F.. ( 1989;). Bacillus halophilus sp. nov., a moderately halophilic Bacillus species. . Syst Appl Microbiol 12:, 162–166. [CrossRef]
    [Google Scholar]
  28. Yoon J. H., Kang S. J., Oh T. K.. ( 2007;). Reclassification of Marinococcus albus Hao et al. 1985 as Salimicrobium album gen. nov., comb. nov. and Bacillus halophilus Ventosa et al. 1990 as Salimicrobium halophilum comb. nov., and description of Salimicrobium luteum sp. nov.. Int J Syst Evol Microbiol 57:, 2406–2411. [CrossRef][PubMed]
    [Google Scholar]
  29. Yoon J. H., Kang S. J., Oh K. H., Oh T. K.. ( 2009;). Salimicrobium flavidum sp. nov., isolated from a marine solar saltern. . Int J Syst Evol Microbiol 59:, 2839–2842. [CrossRef][PubMed]
    [Google Scholar]
  30. Yurkov V., Stackebrandt E., Holmes A., Fuerst J. A., Hugenholtz P., Golecki J., Gad’on N., Gorlenko V. M., Kompantseva E. I., Drews G.. ( 1994;). Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov.. Int J Syst Bacteriol 44:, 427–434. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.062042-0
Loading
/content/journal/ijsem/10.1099/ijs.0.062042-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error