1887

Abstract

Eight strains with identical sequences of the D1/D2 domains of the large subunit rRNA genes were isolated from fallen fruits in two distant localities in Laos. These strains represent a novel dimorphic budding yeast species producing invasive pseudohyphae and a brown pigment when growing on media containing quinic acid as the sole carbon source or tryptophan as the sole nitrogen source. Phylogenetic analysis of the sequences of the D1/D2 domains, the internal transcribed spacer (ITS) regions and the 18S rRNA genes placed the novel species in the clade close to , and . The taxonomic name f.a., sp. nov., reflecting the geographical origin of the isolates, is proposed for the novel species. The type strain is 11-524 ( = CBS 12961 = NCAIM Y.02124 = CCY 64-4-1). The Mycobank number is MB 807383.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.061796-0
2014-06-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/6/1847.html?itemId=/content/journal/ijsem/10.1099/ijs.0.061796-0&mimeType=html&fmt=ahah

References

  1. Barnett J. A., Payne R. W., Yarrow D.. ( 1990;). Yeasts: Characteristics and Identification. Cambridge:: Cambridge University Press;.
    [Google Scholar]
  2. Bentley R., Haslam E.. ( 1990;). The shikimate pathway–a metabolic tree with many branches. . Crit Rev Biochem Mol Biol 25:, 307–384. [CrossRef][PubMed]
    [Google Scholar]
  3. Boerjan W., Ralph J., Baucher M.. ( 2003;). Lignin biosynthesis. . Annu Rev Plant Biol 54:, 519–546. [CrossRef][PubMed]
    [Google Scholar]
  4. Case M. E., Geever R. F., Asch D. K.. ( 1992;). Use of gene replacement transformation to elucidate gene function in the qa gene cluster of Neurospora crassa. . Genetics 130:, 729–736.[PubMed]
    [Google Scholar]
  5. Chaskes S., Frases S., Cammer M., Gerfen G., Casadevall A.. ( 2008;). Growth and pigment production on d-tryptophan medium by Cryptococcus gattii, Cryptococcus neoformans, and Candida albicans. . J Clin Microbiol 46:, 255–264. [CrossRef][PubMed]
    [Google Scholar]
  6. Dvorák J., Jue D., Lassner M.. ( 1987;). Homogenization of tandemly repeated nucleotide sequences by distance-dependent nucleotide sequence conversion. . Genetics 116:, 487–498.[PubMed]
    [Google Scholar]
  7. Fell J. W., Pitt J. I.. ( 1969;). Taxonomy of the yeast genus Metschnikowia: a correction and a new variety. . J Bacteriol 98:, 853–854.[PubMed]
    [Google Scholar]
  8. Felsenstein J.. ( 2007;). phylip (phylogeny inference package), version 3.67. . Distributed by the author. Department of Genome Sciences, University of Washington;, Seattle, USA:.
  9. Felsenstein J., Churchill G. A.. ( 1996;). A Hidden Markov Model approach to variation among sites in rate of evolution. . Mol Biol Evol 13:, 93–104. [CrossRef][PubMed]
    [Google Scholar]
  10. Geever R. F., Huiet L., Baum J. A., Tyler B. M., Patel V. B., Rutledge B. J., Case M. E., Giles N. H.. ( 1989;). DNA sequence, organization and regulation of the qa gene cluster of Neurospora crassa. . J Mol Biol 207:, 15–34. [CrossRef][PubMed]
    [Google Scholar]
  11. Groenewald M., Robert V., Smith M. Th.. ( 2011;). Five novel Wickerhamomyces- and Metschnikowia-related yeast species, Wickerhamomyces chaumierensis sp. nov., Candida pseudoflosculorum sp. nov., Candida danieliae sp. nov., Candida robnettiae sp. nov. and Candida eppingiae sp. nov., isolated from plants. . Int J Syst Evol Microbiol 61:, 2015–2022. [CrossRef][PubMed]
    [Google Scholar]
  12. Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O.. ( 2010;). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. . Syst Biol 59:, 307–321. [CrossRef][PubMed]
    [Google Scholar]
  13. Hawkins A. R., Lamb H. K., Moore J. D., Charles I. G., Roberts C. F.. ( 1993;). The pre-chorismate (shikimate) and quinate pathways in filamentous fungi: theoretical and practical aspects. . J Gen Microbiol 139:, 2891–2899. [CrossRef][PubMed]
    [Google Scholar]
  14. Katoh K., Toh H.. ( 2008;). Recent developments in the mafft multiple sequence alignment program. . Brief Bioinform 9:, 286–298. [CrossRef][PubMed]
    [Google Scholar]
  15. Kim B.-G., Jung W. D., Mok H., Ahn J. H.. ( 2013;). Production of hydroxycinnamoyl-shikimates and chlorogenic acid in Escherichia coli: production of hydroxycinnamic acid conjugates. . Microb Cell Fact 12:, 15. [CrossRef][PubMed]
    [Google Scholar]
  16. Korth H., Pulverer G.. ( 1971;). Pigment formation for differentiating Cryptococcus neoformans from Candida albicans. . Appl Microbiol 21:, 541–542.[PubMed]
    [Google Scholar]
  17. Lachance M.-A.. ( 2011;). Metschnikowia (1899). . In The Yeasts, a Taxonomic Study, , 5th edn., vol. 2, pp. 375–620. Edited by Kurtzman C. P., Fell J., Boekhout T... Amsterdam:: Elsevier;.
    [Google Scholar]
  18. Lachance M. A., Bowles J. M., Kwon S., Marinoni G., Starmer W. T., Janzen D. H.. ( 2001;). Metschnikowia lochheadii and Metschnikowia drosophilae, two new yeast species isolated from insects associated with flowers. . Can J Microbiol 47:, 103–109. [CrossRef][PubMed]
    [Google Scholar]
  19. Lachance M.-A., Daniel H. M., Meyer W., Prasad G. S., Gautam S. P., Boundy-Mills K.. ( 2003;). The D1/D2 domain of the large-subunit rDNA of the yeast species Clavispora lusitaniae is unusually polymorphic. . FEMS Yeast Res 4:, 253–258. [CrossRef][PubMed]
    [Google Scholar]
  20. Levy C. C., Zucker M.. ( 1960;). Cinnamyl and p-coumaryl esters as intermediates in the biosynthesis of chlorogenic acid. . J Biol Chem 235:, 2418–2425.[PubMed]
    [Google Scholar]
  21. Miller M. W., Barker E. R., Pitt J. I.. ( 1967;). Ascospore numbers in Metschnikowia. . J Bacteriol 94:, 258–259.[PubMed]
    [Google Scholar]
  22. Möller B., Herrmann K.. ( 1983;). Quinic acid esters of hydroxycinnamic acids in stone and pome fruit. . Phytochemistry 22:, 477–481. [CrossRef]
    [Google Scholar]
  23. O’Donell K.. ( 1993;). Fusarium and its near relatives. . In The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics, pp. 225–233. Edited by Reynolds D. R., Taylor J. W... Wallingford:: CAB International;.
    [Google Scholar]
  24. Page R. D. M.. ( 1996;). TreeView: an application to display phylogenetic trees on personal computers. . Comput Appl Biosci 12:, 357–358.[PubMed]
    [Google Scholar]
  25. Pitt J. I., Miller M. W.. ( 1968;). Sporulation in Candida pulcherrima, Candida reukaufii and Chlamydozyma species: their relationships with Metschnikowia. . Mycologia 60:, 663–685. [CrossRef]
    [Google Scholar]
  26. Ronquist F., Teslenko M., van der Mark P., Ayres D. L., Darling A., Höhna S., Larget B., Liu L., Suchard M. A., Huelsenbeck J. P.. ( 2012;). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. . Syst Biol 61:, 539–542. [CrossRef][PubMed]
    [Google Scholar]
  27. Saccone C., Lanave C., Pesole G., Preparata G.. ( 1990;). Influence of base composition on quantitative estimates of gene evolution. . Methods Enzymol 183:, 570–584. [CrossRef][PubMed]
    [Google Scholar]
  28. Sigoillot J.-C., Berrin J.-G., Bey M., Lesage-Meessen L., Levasseur A., Lomascolo A., Record E., Uzan-Boukhris E.. ( 2012;). Fungal strategies for lignin degradation. . In Lignins – Biosynthesis, Biodegradation and Bioengineering (Advances in Botanical Research, 61), pp. 264–295. Edited by Jouanin L., Lapierre C... London:: Academic Press;. [CrossRef]
    [Google Scholar]
  29. Sipiczki M.. ( 2003;). Candida zemplinina sp. nov., an osmotolerant and psychrotolerant yeast that ferments sweet botrytized wines. . Int J Syst Evol Microbiol 53:, 2079–2083. [CrossRef][PubMed]
    [Google Scholar]
  30. Sipiczki M.. ( 2006;). Metschnikowia strains isolated from botrytized grapes antagonize fungal and bacterial growth by iron depletion. . Appl Environ Microbiol 72:, 6716–6724. [CrossRef][PubMed]
    [Google Scholar]
  31. Sipiczki M.. ( 2011;). Dimorphic cycle in Candida citri sp. nov., a novel yeast species isolated from rotting fruit in Borneo. . FEMS Yeast Res 11:, 202–208. [CrossRef][PubMed]
    [Google Scholar]
  32. Sipiczki M., Kajdacsi E.. ( 2009;). Jaminaea angkorensis gen. nov., sp. nov., a novel anamorphic fungus containing an S943 nuclear small-subunit rRNA group IB intron represents a basal branch of Microstromatales. . Int J Syst Evol Microbiol 59:, 914–920. [CrossRef][PubMed]
    [Google Scholar]
  33. Sipiczki M., Pfliegler W. P., Holb I. J.. ( 2013;). Metschnikowia species share a pool of diverse rRNA genes differing in regions that determine hairpin-loop structures and evolve by reticulation. . PLoS ONE 8:, e67384. [CrossRef][PubMed]
    [Google Scholar]
  34. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  35. van der Walt J. P., Yarrow D.. ( 1984;). Methods for the isolation, maintenance, classification and identification of yeasts. . In The Yeasts, a Taxonomic Study, , 3rd edn., pp. 45–104. Edited by Kreger-van Rij N. J. W... Amsterdam:: Elsevier;. [CrossRef]
    [Google Scholar]
  36. White T. J., Burns T., Lee S., Taylor J.. ( 1990;). Amplification and sequencing of fungal ribosomal RNA genes for phylogenetics. . In PCR Protocols. A Guide to Methods and Applications, pp. 315–322. Edited by Innis M. A., Gelfand D. H., Snisky J. J., White T. J... San Diego, CA:: Academic Press;.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.061796-0
Loading
/content/journal/ijsem/10.1099/ijs.0.061796-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error