1887

Abstract

A previously isolated exoelectrogenic bacterium, strain SD-1, was further characterized and identified as a representative of a novel species of the genus . Strain SD-1 was Gram-negative, aerotolerant, anaerobic, non-spore-forming, non-fermentative and non-motile. Cells were short, curved rods (0.8–1.3 µm long and 0.3 µm in diameter). Growth of strain SD-1 was observed at 15–42 °C and pH 6.0–8.5, with optimal growth at 30–35 °C and pH 7. Analysis of 16S rRNA gene sequences indicated that the isolate was a member of the genus , with the closest known relative being PCA (98 % similarity). Similar to other members of the genus , strain SD-1 used soluble or insoluble Fe(III) as the sole electron acceptor coupled with the oxidation of acetate. However, SD-1 could not reduce fumarate as an electron acceptor with acetate oxidization, which is an important physiological trait for . Moreover, SD-1 could grow in media containing as much as 3 % NaCl, while PCA can tolerate just half this concentration, and this difference in salt tolerance was even more obvious when cultivated in bioelectrochemical systems. DNA–DNA hybridization analysis of strain SD-1 and its closest relative, ATCC 51573, showed a relatedness of 61.6 %. The DNA G+C content of strain SD-1 was 58.9 mol%. Thus, on the basis of these characteristics, strain SD-1 was not assigned to , and was instead classified in the genus as a representative of a novel species. The name sp. nov. is proposed, with the type strain SD-1 ( = CGMCC 1.12536 = KCTC 4672).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.061598-0
2014-10-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/10/3485.html?itemId=/content/journal/ijsem/10.1099/ijs.0.061598-0&mimeType=html&fmt=ahah

References

  1. Bretschger O., Obraztsova A., Sturm C. A., Chang I. S., Gorby Y. A., Reed S. B., Culley D. E., Reardon C. L., Barua S.. & other authors ( 2007;). Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. . Appl Environ Microbiol 73:, 7003–7012. [CrossRef][PubMed]
    [Google Scholar]
  2. Caccavo F. Jr, Lonergan D. J., Lovley D. R., Davis M., Stolz J. F., McInerney M. J.. ( 1994;). Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. . Appl Environ Microbiol 60:, 3752–3759.[PubMed]
    [Google Scholar]
  3. Call D. F., Logan B. E.. ( 2011a;). Lactate oxidation coupled to iron or electrode reduction by Geobacter sulfurreducens PCA. . Appl Environ Microbiol 77:, 8791–8794. [CrossRef][PubMed]
    [Google Scholar]
  4. Call D. F., Logan B. E.. ( 2011b;). A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells. . Biosens Bioelectron 26:, 4526–4531. [CrossRef][PubMed]
    [Google Scholar]
  5. Call D. F., Wagner R. C., Logan B. E.. ( 2009;). Hydrogen production by Geobacter species and a mixed consortium in a microbial electrolysis cell. . Appl Environ Microbiol 75:, 7579–7587. [CrossRef][PubMed]
    [Google Scholar]
  6. Cline J. D.. ( 1969;). Spectrophotometric determination of hydrogen sulfide in natural waters. . Limnol Oceanogr 14:, 454–458. [CrossRef]
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  9. Hedrick D. B., Peacock A. D., Lovley D. R., Woodard T. L., Nevin K. P., Long P. E., White D. C.. ( 2009;). Polar lipid fatty acids, LPS-hydroxy fatty acids, and respiratory quinones of three Geobacter strains, and variation with electron acceptor. . J Ind Microbiol Biotechnol 36:, 205–209. [CrossRef][PubMed]
    [Google Scholar]
  10. Hobbie J. E., Daley R. J., Jasper S.. ( 1977;). Use of nuclepore filters for counting bacteria by fluorescence microscopy. . Appl Environ Microbiol 33:, 1225–1228.[PubMed]
    [Google Scholar]
  11. Huss V. A., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  12. Komagata K., Suzuki K.. ( 1987;). Lipid and cell wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  13. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). Clustal W and Clustal X version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  14. Logan B. E.. ( 2008;). Microbial Fuel Cells. Hoboken, NJ:: Wiley;.
    [Google Scholar]
  15. Logan B. E., Rabaey K.. ( 2012;). Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. . Science 337:, 686–690. [CrossRef][PubMed]
    [Google Scholar]
  16. Lovley D. R.. ( 2012;). Electromicrobiology. . Annu Rev Microbiol 66:, 391–409. [CrossRef][PubMed]
    [Google Scholar]
  17. Lovley D. R., Phillips E. J. P.. ( 1986;). Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac river. . Appl Environ Microbiol 52:, 751–757.[PubMed]
    [Google Scholar]
  18. Lovley D. R., Giovannoni S. J., White D. C., Champine J. E., Phillips E. J. P., Gorby Y. A., Goodwin S.. ( 1993;). Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. . Arch Microbiol 159:, 336–344. [CrossRef][PubMed]
    [Google Scholar]
  19. Lovley D. R., Holmes D. E., Nevin K. P.. ( 2004;). Dissimilatory Fe(III) and Mn(IV) reduction. . Adv Microb Physiol 49:, 219–286. [CrossRef][PubMed]
    [Google Scholar]
  20. Mandel M., Marmur J.. ( 1968;). Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. . Methods Enzymol 12B:, 195–206. [CrossRef]
    [Google Scholar]
  21. Miller L. T.. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16:, 584–586.[PubMed]
    [Google Scholar]
  22. Nevin K. P., Richter H., Covalla S. F., Johnson J. P., Woodard T. L., Orloff A. L., Jia H., Zhang M., Lovley D. R.. ( 2008;). Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. . Environ Microbiol 10:, 2505–2514. [CrossRef][PubMed]
    [Google Scholar]
  23. Prakash O., Gihring T. M., Dalton D. D., Chin K.-J., Green S. J., Akob D. M., Wanger G., Kostka J. E.. ( 2010;). Geobacter daltonii sp. nov., an Fe(III)- and uranium(VI)-reducing bacterium isolated from a shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination. . Int J Syst Evol Microbiol 60:, 546–553. [CrossRef][PubMed]
    [Google Scholar]
  24. Purkhold U., Pommerening-Röser A., Juretschko S., Schmid M. C., Koops H.-P., Wagner M.. ( 2000;). Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. . Appl Environ Microbiol 66:, 5368–5382. [CrossRef][PubMed]
    [Google Scholar]
  25. Richter H., Lanthier M., Nevin K. P., Lovley D. R.. ( 2007;). Lack of electricity production by Pelobacter carbinolicus indicates that the capacity for Fe(III) oxide reduction does not necessarily confer electron transfer ability to fuel cell anodes. . Appl Environ Microbiol 73:, 5347–5353. [CrossRef][PubMed]
    [Google Scholar]
  26. Rotaru A.-E., Shrestha P. M., Liu F., Shrestha M., Shrestha D., Embree M., Zengler K., Wardman C., Nevin K. P., Lovley D. R.. ( 2014;). A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. . Energy Environ Sci 7:, 408–415. [CrossRef]
    [Google Scholar]
  27. Sasser, M. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, Technical Note 101. Newark, DE:: MIDI;.
  28. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  29. Summers Z. M., Fogarty H. E., Leang C., Franks A. E., Malvankar N. S., Lovley D. R.. ( 2010;). Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. . Science 330:, 1413–1415. [CrossRef][PubMed]
    [Google Scholar]
  30. Sun D., Call D. F., Kiely P. D., Wang A., Logan B. E.. ( 2012;). Syntrophic interactions improve power production in formic acid fed MFCs operated with set anode potentials or fixed resistances. . Biotechnol Bioeng 109:, 405–414. [CrossRef][PubMed]
    [Google Scholar]
  31. Sun D., Call D., Wang A., Cheng S., Logan B. E.. ( 2014;). Geobacter sp. SD-1 with enhanced electrochemical activity in high salt concentration solutions. . Environ Microbiol Rep (in press). DOI: 10.1111/1758-2229.12193. [CrossRef]
    [Google Scholar]
  32. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  33. Torres C. I., Krajmalnik-Brown R., Parameswaran P., Marcus A. K., Wanger G., Gorby Y. A., Rittmann B. E.. ( 2009;). Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization. . Environ Sci Technol 43:, 9519–9524. [CrossRef][PubMed]
    [Google Scholar]
  34. Viulu S., Nakamura K., Kojima A., Yoshiyasu Y., Saitou S., Takamizawa K.. ( 2013;). Geobacter sulfurreducens subsp. ethanolicus, subsp. nov., an ethanol-utilizing dissimilatory Fe(III)-reducing bacterium from a lotus field. . J Gen Appl Microbiol 59:, 325–334. [CrossRef][PubMed]
    [Google Scholar]
  35. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  36. Yates M. D., Kiely P. D., Call D. F., Rismani-Yazdi H., Bibby K., Peccia J., Regan J. M., Logan B. E.. ( 2012;). Convergent development of anodic bacterial communities in microbial fuel cells. . ISME J 6:, 2002–2013. [CrossRef][PubMed]
    [Google Scholar]
  37. Zuo Y., Xing D., Regan J. M., Logan B. E.. ( 2008;). Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. . Appl Environ Microbiol 74:, 3130–3137. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.061598-0
Loading
/content/journal/ijsem/10.1099/ijs.0.061598-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error