1887

Abstract

Seven apiculate yeast strains that were isolated from the flowers of Pohl in Brazil are genetically, morphologically and phenotypically distinct from recognized species of the genera and . Genetic discontinuities between the novel strains and their closest relatives were found using a networking approach based on the concatenated sequences of the rRNA gene (internal transcribed spacer and D1/D2 of the LSU), and the protein-coding genes for actin and translation elongation factor-1α. Phylogenetic analysis based on the rRNA and the actin gene placed the novel species represented by the strains in close relationship to and . PCR fingerprinting with microsatellite primers confirmed the genetic heterogeneity of the novel species. The name sp. nov. is proposed, with UFMG POG a.1 ( = ZIM 2311 = CBS 13383) as the type strain; MycoBank no. MB807210. As the current description of the genus does not allow the presence of multilateral budding, an emended diagnosis of the genus Zikes is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.061499-0
2014-07-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/7/2364.html?itemId=/content/journal/ijsem/10.1099/ijs.0.061499-0&mimeType=html&fmt=ahah

References

  1. Bandelt H. J., Forster P., Röhl A.. ( 1999;). Median-joining networks for inferring intraspecific phylogenies. . Mol Biol Evol 16:, 37–48. [CrossRef][PubMed]
    [Google Scholar]
  2. Boekhout T., Kurtzman C. P., O’Donnell K., Smith M. T.. ( 1994;). Phylogeny of the yeast genera Hanseniaspora (anamorph Kloeckera), Dekkera (anamorph Brettanomyces), and Eeniella as inferred from partial 26S ribosomal DNA nucleotide sequences. . Int J Syst Bacteriol 44:, 781–786. [CrossRef][PubMed]
    [Google Scholar]
  3. Brito da Cunha A., El-Tabey Shehata A. M., de Oliveira W.. ( 1957;). A study of the diets and nutritional preferences of tropical species Drosophila. . Ecology 38:, 98–106. [CrossRef]
    [Google Scholar]
  4. Cadez N., Raspor P., de Cock A. W., Boekhout T., Smith M. T.. ( 2002;). Molecular identification and genetic diversity within species of the genera Hanseniaspora and Kloeckera. . FEMS Yeast Res 1:, 279–289.[PubMed]
    [Google Scholar]
  5. Cadez N., Poot G. A., Raspor P., Smith M. T.. ( 2003;). Hanseniaspora meyeri sp. nov., Hanseniaspora clermontiae sp. nov., Hanseniaspora lachancei sp. nov. and Hanseniaspora opuntiae sp. nov., novel apiculate yeast species. . Int J Syst Evol Microbiol 53:, 1671–1680. [CrossRef][PubMed]
    [Google Scholar]
  6. Cadez N., Raspor P., Smith M. T.. ( 2006;). Phylogenetic placement of HanseniasporaKloeckera species using multigene sequence analysis with taxonomic implications: descriptions of Hanseniaspora pseudoguilliermondii sp. nov. and Hanseniaspora occidentalis var. citrica var. nov.. Int J Syst Evol Microbiol 56:, 1157–1165. [CrossRef][PubMed]
    [Google Scholar]
  7. Chandler J. A., Eisen J. A., Kopp A.. ( 2012;). Yeast communities of diverse Drosophila species: comparison of two symbiont groups in the same hosts. . Appl Environ Microbiol 78:, 7327–7336. [CrossRef][PubMed]
    [Google Scholar]
  8. Chang C. F., Huang L. Y., Chen S. F., Lee C. F.. ( 2012;). Kloeckera taiwanica sp. nov., an ascomycetous apiculate yeast species isolated from mushroom fruiting bodies. . Int J Syst Evol Microbiol 62:, 1434–1437. [CrossRef][PubMed]
    [Google Scholar]
  9. Clement M., Posada D., Crandall K. A.. ( 2000;). TCS: a computer program to estimate gene genealogies. . Mol Ecol 9:, 1657–1659. [CrossRef][PubMed]
    [Google Scholar]
  10. Daniel H. M., Meyer W.. ( 2003;). Evaluation of ribosomal RNA and actin gene sequences for the identification of ascomycetous yeasts. . Int J Food Microbiol 86:, 61–78. [CrossRef][PubMed]
    [Google Scholar]
  11. Jindamorakot S., Ninomiya S., Limtong S., Yongmanitchai W., Tuntirungkij M., Potacharoen W., Tanaka K., Kawasaki H., Nakase T.. ( 2009;). Three new species of bipolar budding yeasts of the genus Hanseniaspora and its anamorph Kloeckera isolated in Thailand. . FEMS Yeast Res 9:, 1327–1337. [CrossRef][PubMed]
    [Google Scholar]
  12. Kurtzman C. P.. ( 2003;). Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. . FEMS Yeast Res 4:, 233–245. [CrossRef][PubMed]
    [Google Scholar]
  13. Kurtzman C. P., Robnett C. J.. ( 1998;). Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. . Antonie van Leeuwenhoek 73:, 331–371. [CrossRef][PubMed]
    [Google Scholar]
  14. Kurtzman C. P., Fell J. W., Boekhout T.. ( 2011;). Methods for isolation, phenotypic characterization and maintenance of yeasts. . In The Yeasts, a Taxonomic Study, , 5th edn., vol. 1, pp. 87–110. Edited by Kurtzman C. P., Fell J. W., Boekhout T... Amsterdam:: Elsevier;. [CrossRef]
    [Google Scholar]
  15. Lachance M. A., Dobson J., Wijayanayaka D. N., Smith A. M. E.. ( 2010;). The use of parsimony network analysis for the formal delineation of phylogenetic species of yeasts: Candida apicola, Candida azyma, and Candida parazyma sp. nov., cosmopolitan yeasts associated with floricolous insects. . Antonie van Leeuwenhoek 97:, 155–170. [CrossRef][PubMed]
    [Google Scholar]
  16. Lachance M. A., Wijayanayaka T. M., Bundus J. D., Wijayanayaka D. N.. ( 2011;). Ribosomal DNA sequence polymorphism and the delineation of two ascosporic yeast species: Metschnikowia agaves and Starmerella bombicola. . FEMS Yeast Res 11:, 324–333. [CrossRef][PubMed]
    [Google Scholar]
  17. Meyer S. A., Smith M. T., Simione F. P. Jr. ( 1978;). Systematics of Hanseniaspora Zikes and Kloeckera Janke. . Antonie van Leeuwenhoek 44:, 79–96. [CrossRef][PubMed]
    [Google Scholar]
  18. Miller M. W., Phaff H. J.. ( 1962;). Successive microbial populations in Calimyrna figs. . Appl Microbiol 10:, 394–400.[PubMed]
    [Google Scholar]
  19. Morais P. B., Hagler A. N., Rosa C. A., Mendonca-Hagler L. C., Klaczko L. B.. ( 1992;). Yeasts associated with Drosophila in tropical forests of Rio de Janeiro, Brazil. . Can J Microbiol 38:, 1150–1155. [CrossRef][PubMed]
    [Google Scholar]
  20. Morais P. B., Martins M. B., Klaczko L. B., Mendonça-Hagler L. C., Hagler A. N.. ( 1995;). Yeast succession in the Amazon fruit Parahancornia amapa as resource partitioning among Drosophila spp.. Appl Environ Microbiol 61:, 4251–4257.[PubMed]
    [Google Scholar]
  21. Phaff H. J., Starmer W. T.. ( 1987;). Yeasts associated with plants, insects and soils. . In The Yeasts, , 2nd edn., vol. 1. Edited by Rose A. H., Harrison J. S... New York:: Academic Press;.
    [Google Scholar]
  22. Posada D., Crandall K. A.. ( 2001;). Intraspecific gene genealogies: trees grafting into networks. . Trends Ecol Evol 16:, 37–45. [CrossRef][PubMed]
    [Google Scholar]
  23. Swofford D. L.. ( 2002;). paup*: Phylogenetic analysis using parsimony (and other methods), version 4. . Sunderland, MA:: Sinauer Associates;.
  24. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  25. Yamada Y., Maeda K., Banno I.. ( 1992;). The phylogenetic relationships of the Q6-equipped species in the teleomorphic apiculate yeast genera Hanseniaspora, Nadsonia, and Saccharomycodes based on the partial sequences of 18S and 26S ribosomal ribonucleic acids. . J Gen Appl Microbiol 38:, 585–596. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.061499-0
Loading
/content/journal/ijsem/10.1099/ijs.0.061499-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error