1887

Abstract

Two bacterial strains (JC109 and JC261) were isolated from a sediment sample collected from a shrimp cultivation pond in Tamil Nadu (India). Cells were Gram-stain-negative, motile rods. Both strains were positive for catalase and oxidase, hydrolysed Tween 80, and grew chemo-organoheterotrophically with an optimal pH of 6 (range pH 4–9) and at 30 °C (range 25–40 °C). Based on 16S rRNA gene sequence analysis, strains JC109 and JC261 were identified as belonging to the genus with B-5 (sequence similarity values of 99.3 and 99.7 %, respectively) and MACL04 (sequence similarity values of 98.8 and 99.2 %, respectively) as their closest phylogenetic neighbours. The 16S rRNA gene sequence similarity between strains JC109 and JC261 was 99.6 %. The level of DNA–DNA relatedness between the two strains was 88 %. Strain JC109 showed 31±1 and 26±2 % DNA–DNA relatedness with DSM 16502 and DSM 23776, respectively. The DNA G+C content of strains JC109 and JC261 was 54.5 and 53.4 mol%, respectively. Polar lipids of strain JC109 included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unidentified aminophospholipids, two unidentified phospholipids and two unidentified lipids. The major fatty acids were C, C, C C 3-OH, Cω7, Cω7 and C cyclo ω8. Both strains could utilize diesel oil and a variety of xenobiotics as carbon and energy sources. The results of physiological, biochemical, chemotaxonomic and molecular analyses allowed the clear differentiation of strains JC109 and JC261 from all other members of the genus . Strains JC109 and JC261 are thus considered to represent a novel species, for which the name sp. nov. is proposed. The type strain is JC109 ( = KCTC 23751 = NBRC 108843).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.061168-0
2014-10-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/10/3553.html?itemId=/content/journal/ijsem/10.1099/ijs.0.061168-0&mimeType=html&fmt=ahah

References

  1. Atlas R. M., Hazen T. C.. ( 2011;). Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. . Environ Sci Technol 45:, 6709–6715. [CrossRef][PubMed]
    [Google Scholar]
  2. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F.. ( 1978;). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. . Proc Natl Acad Sci U S A 75:, 4801–4805. [CrossRef][PubMed]
    [Google Scholar]
  3. Bruns A., Berthe-Corti L.. ( 1999;). Fundibacter jadensis gen. nov., sp. nov., a new slightly halophilic bacterium, isolated from intertidal sediment. . Int J Syst Bacteriol 49:, 441–448. [CrossRef][PubMed]
    [Google Scholar]
  4. Cappuccino J. G., Sherman N.. ( 1999;). Microbiology: a Laboratory Manual, , 5th edn.. Menlo Park, CA:: Benjamin/Cummings;.
    [Google Scholar]
  5. Chandran P., Das N.. ( 2010;). Biosurfactant production and diesel oil degradation by yeast species Trichosporon asahii isolated from petroleum hydrocarbon contaminated soil. . Int J Eng Sci Technol 2:, 6942–6953.
    [Google Scholar]
  6. Fernández-Martínez J., Pujalte M. J., García-Martínez J., Mata M., Garay E., Rodríguez-Valeral F.. ( 2003;). Description of Alcanivorax venustensis sp. nov. and reclassification of Fundibacter jadensis DSM 1 21 78T (Bruns and Berthe-Corti 1999) as Alcanivorax jadensis comb. nov., members of the emended genus Alcanivorax. . Int J Syst Evol Microbiol 53:, 331–338. [CrossRef][PubMed]
    [Google Scholar]
  7. Harayama S., Kasai Y., Hara A.. ( 2004;). Microbial communities in oil-contaminated seawater. . Curr Opin Biotechnol 15:, 205–214. [CrossRef][PubMed]
    [Google Scholar]
  8. Imhoff J. F., Pfennig N.. ( 2001;). Thioflavicoccus mobilis gen. nov., sp. nov., a novel purple sulfur bacterium with bacteriochlorophyll b. . Int J Syst Evol Microbiol 51:, 105–110.[PubMed]
    [Google Scholar]
  9. Imhoff J. F., Süling J., Petri R.. ( 1998;). Phylogenetic relationships among the Chromatiaceae, their taxonomic reclassification and description of the new genera Allochromatium, Halochromatium, Isochromatium, Marichromatium, Thiococcus, Thiohalocapsa and Thermochromatium. . Int J Syst Bacteriol 48:, 1129–1143. [CrossRef][PubMed]
    [Google Scholar]
  10. Kates M.. ( 1972;). Techniques of Lipidology. New York:: Elsevier;.
    [Google Scholar]
  11. Kates M.. ( 1986;). Techniques of Lipidology: Isolation, Analysis, and Identification of Lipids. Amsterdam:: Elsevier;.
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  13. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  14. Lai Q., Wang L., Liu Y., Fu Y., Zhong H., Wang B., Chen L., Wang J., Sun F., Shao Z.. ( 2011;). Alcanivorax pacificus sp. nov., isolated from a deep-sea pyrene-degrading consortium. . Int J Syst Evol Microbiol 61:, 1370–1374. [CrossRef][PubMed]
    [Google Scholar]
  15. Lai Q., Wang J., Gu L., Zheng T., Shao Z.. ( 2013;). Alcanivorax marinus sp. nov., isolated from deep-sea water. . Int J Syst Evol Microbiol 63:, 4428–4432. [CrossRef][PubMed]
    [Google Scholar]
  16. Lakshmi K. V. N. S., Sasikala Ch., Ashok Kumar G. V., Chandrasekaran R., Ramana ChV.. ( 2011;). Phaeovibrio sulfidiphilus gen. nov., sp. nov., phototrophic alphaproteobacteria isolated from brackish water. . Int J Syst Evol Microbiol 61:, 828–833. [CrossRef][PubMed]
    [Google Scholar]
  17. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R.. ( 1985;). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. . Proc Natl Acad Sci U S A 82:, 6955–6959. [CrossRef][PubMed]
    [Google Scholar]
  18. Liu C., Shao Z.. ( 2005;). Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. . Int J Syst Evol Microbiol 55:, 1181–1186. [CrossRef][PubMed]
    [Google Scholar]
  19. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  21. Oren A., Duker S., Ritter S.. ( 1996;). The polar lipid composition of Walsby’s square bacterium. . FEMS Microbiol Lett 138:, 135–140. [CrossRef]
    [Google Scholar]
  22. Priester J. H., Horst A. M., Van de Werfhorst L. C., Saleta J. L., Mertes L. A., Holden P. A.. ( 2007;). Enhanced visualization of microbial biofilms by staining and environmental scanning electron microscopy. . J Microbiol Methods 68:, 577–587. [CrossRef][PubMed]
    [Google Scholar]
  23. Rivas R., García-Fraile P., Peix A., Mateos P. F., Martínez-Molina E., Velázquez E.. ( 2007;). Alcanivorax balearicus sp. nov., isolated from Lake Martel. . Int J Syst Evol Microbiol 57:, 1331–1335. [CrossRef][PubMed]
    [Google Scholar]
  24. Ryerson T. B., Camilli R., Kessler J. D., Kujawinski E. B., Reddy C. M., Valentine D. L., Atlas E. L., Blake D. R., de Gouw J. A. et al. ( 2012;). Chemical composition measurements quantify Deepwater Horizon hydrocarbon emissions and distribution in the marine environment. . Proc Natl Acad Sci U S A 109:, 20246–20253. [CrossRef][PubMed]
    [Google Scholar]
  25. Sasser M..( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc;.
  26. Seldin L., Dubnau D.. ( 1985;). Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans and other nitrogen-fixing Bacillus strains. . Int J Syst Bacteriol 35:, 151–154. [CrossRef]
    [Google Scholar]
  27. Smibert R. M., Krieg N. R.. ( 1981;). General characterization. . In Manual of Methods for General Bacteriology, pp. 409–443. Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  28. Stackebrandt E., Goebel B. M.. ( 1994;). A place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  29. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  30. Tindall B. J.. ( 1990;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  31. Tindall B. J., Tomlinson G. A., Hochstein L. I.. ( 1987;). Polar lipid composition of a new halobacterium. . Syst Appl Microbiol 9:, 6–8. [CrossRef][PubMed]
    [Google Scholar]
  32. Tourova T. P., Antonov A. S.. ( 1988;). Identification of microorganisms by rapid DNA-DNA hybridization. . Meth Microbiol 19:, 333–355. [CrossRef]
    [Google Scholar]
  33. Wu Y., Lai Q., Zhou Z., Qiao N., Liu C., Shao Z.. ( 2009;). Alcanivorax hongdengensis sp. nov., an alkane-degrading bacterium isolated from surface seawater of the straits of Malacca and Singapore, producing a lipopeptide as its biosurfactant. . Int J Syst Evol Microbiol 59:, 1474–1479. [CrossRef][PubMed]
    [Google Scholar]
  34. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G. Z., Chen H. H., Xu L. H., Jiang C. L.. ( 2005;). Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. . Int J Syst Evol Microbiol 55:, 1149–1153. [CrossRef][PubMed]
    [Google Scholar]
  35. Yakimov M. M., Golyshin P. N., Lang S., Moore E. R. B., Abraham W. R., Lünsdorf H., Timmis K. N.. ( 1998;). Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. . Int J Syst Bacteriol 48:, 339–348. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.061168-0
Loading
/content/journal/ijsem/10.1099/ijs.0.061168-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error