1887

Abstract

A thermophilic, aerobic, Gram-stain-positive bacterium (strain PM5), which formed mycelia of irregularly branched filaments and produced multiple exospores per cell, was isolated from a geothermally heated biofilm. Strain PM5 grew at 40–65 °C and pH 4.1–8.0, with optimal growth at 55 °C and pH 6.0. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain PM5 belonged to the class , and was related most closely to ONI-1 (97.7 % similarity) and ONI-5 (96.1 %). Morphological features and fatty acid profiles (major fatty acids: iso-C, iso-C and 12,17-dimethyl C) supported the affiliation of strain PM5 to the genus . Strain PM5 oxidized carbon monoxide [CO; 10±1 nmol h (mg protein)], but did not grow with CO as a sole carbon and energy source. Results from analyses of related strains indicated that the capacity for CO uptake occurred commonly among the members of the class ; 13 of 14 strains tested consumed CO or harboured genes that potentially enabled CO oxidation. The results of DNA–DNA hybridization and physiological and biochemical tests allowed the genotypic and phenotypic differentiation of strain PM5 from the two recognized species of the genus . Strain PM5 differed from ONI-1 in its production of orange pigment, lower temperature optimum, hydrolysis of casein and starch, inability to grow with mannitol, xylose or rhamnose as sole carbon sources, and utilization of organic acids and amino acids. Strain PM5 is therefore considered to represent a novel species, for which the name sp. nov. is proposed. The type strain is PM5 ( = DSM 45816 = ATCC BAA-2534).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.059675-0
2014-04-01
2019-08-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/4/1244.html?itemId=/content/journal/ijsem/10.1099/ijs.0.059675-0&mimeType=html&fmt=ahah

References

  1. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  2. Cavaletti L., Monciardini P., Bamonte R., Schumann P., Rohde M., Sosio M., Donadio S.. ( 2006;). New lineage of filamentous, spore-forming, gram-positive bacteria from soil. . Appl Environ Microbiol 72:, 4360–4369. [CrossRef][PubMed]
    [Google Scholar]
  3. Chang Y. J., Land M., Hauser L., Chertkov O., Del Rio T. G., Nolan M., Copeland A., Tice H., Cheng J. F.. & other authors ( 2011;). Non-contiguous finished genome sequence and contextual data of the filamentous soil bacterium Ktedonobacter racemifer type strain (SOSP1-21). . Stand Genomic Sci 5:, 97–111. [CrossRef][PubMed]
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  5. Edgar R. C.. ( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32:, 1792–1797. [CrossRef][PubMed]
    [Google Scholar]
  6. Huss V. A. R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  7. Jackson T. J.. ( 1973;). Thermomicrobium, a new genus of thermophilic bacteria. . Int J Sys Bacteriol 23:, 28–36. [CrossRef][PubMed]
    [Google Scholar]
  8. King G. M.. ( 1999;). Characteristics and significance of atmospheric carbon monoxide consumption by soils. . Chemosphere – Glob Chang Sci 1:, 53–63. [CrossRef]
    [Google Scholar]
  9. King G. M.. ( 2003;). Molecular and culture-based analyses of aerobic carbon monoxide oxidizer diversity. . Appl Environ Microbiol 69:, 7257–7265. [CrossRef][PubMed]
    [Google Scholar]
  10. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  11. Mesbah M., Premachandran U., Whitman W.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  12. Meyer O., Schlegel H. G.. ( 1978;). Reisolation of the carbon monoxide utilizing hydrogen bacterium Pseudomonas carboxydovorans (Kistner) comb. nov.. Arch Microbiol 118:, 35–43. [CrossRef][PubMed]
    [Google Scholar]
  13. Pruesse E., Peplies J., Glöckner F. O.. ( 2012;). sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics 28:, 1823–1829. [CrossRef][PubMed]
    [Google Scholar]
  14. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, , 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  15. Schoenborn L., Yates P. S., Grinton B. E., Hugenholtz P., Janssen P. H.. ( 2004;). Liquid serial dilution is inferior to solid media for isolation of cultures representative of the phylum-level diversity of soil bacteria. . Appl Environ Microbiol 70:, 4363–4366. [CrossRef][PubMed]
    [Google Scholar]
  16. Smibert R. M., Krieg N. L.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  17. Smith C. W.. ( 1981;). Bryophytes and lichens of the Puhimau Geothermal Area, Hawaii Volcanoes National Park. . Bryologist 84:, 457–466. [CrossRef]
    [Google Scholar]
  18. Stott M. B., Crowe M. A., Mountain B. W., Smirnova A. V., Hou S., Alam M., Dunfield P. F.. ( 2008;). Isolation of novel bacteria, including a candidate division, from geothermal soils in New Zealand. . Environ Microbiol 10:, 2030–2041. [CrossRef][PubMed]
    [Google Scholar]
  19. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  20. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  21. Vyssotski M., Ryan J., Lagutin K., Wong H., Morgan X., Stott M.. ( 2012;). A novel fatty acid, 12,17-dimethyloctadecanoic acid, from the extremophile Thermogemmatispora sp. (strain T81). . Lipids 47:, 601–611. [CrossRef][PubMed]
    [Google Scholar]
  22. Yabe S., Aiba Y., Sakai Y., Hazaka M., Yokota A.. ( 2010;). Thermosporothrix hazakensis gen. nov., sp. nov., isolated from compost, description of Thermosporotrichaceae fam. nov. within the class Ktedonobacteria Cavaletti et al. 2007 and emended description of the class Ktedonobacteria. . Int J Syst Evol Microbiol 60:, 1794–1801. [CrossRef][PubMed]
    [Google Scholar]
  23. Yabe S., Aiba Y., Sakai Y., Hazaka M., Yokota A.. ( 2011;). Thermogemmatispora onikobensis gen. nov., sp. nov. and Thermogemmatispora foliorum sp. nov., isolated from fallen leaves on geothermal soils, and description of Thermogemmatisporaceae fam. nov. and Thermogemmatisporales ord. nov. within the class Ktedonobacteria. . Int J Syst Evol Microbiol 61:, 903–910. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.059675-0
Loading
/content/journal/ijsem/10.1099/ijs.0.059675-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error